Pengembangan Model Hybrid Arima-Machine Learning untuk Prediksi Harga Saham BCA
DOI:
https://doi.org/10.25126/jtiik.2025126Kata Kunci:
Hybrid, ARIMA, Machine Learning, Saham, BBCAAbstrak
Penelitian ini bertujuan untuk menganalisis kinerja metode hybrid antara algoritma machine learning dan model ARIMA dalam memprediksi harga saham Bank BCA selama lima tahun terakhir. Data yang digunakan berasal dari saham Bank BCA periode 13 November 2019 hingga 12 November 2024, diperoleh melalui Yahoo Finance. Dataset ini terdiri dari 1210 record dengan tujuh variabel: Date, Open, Close, High, Low, Volume, dan Adj Close. Pengujian dilakukan memodelkan data linier menggunakan ARIMA, kemudian memprediksi residual menggunakan algoritma machine learning yaitu KNN, Naïve Bayes, Logistic Regression, SVM, Random Forest, dan Gradient Boost. Selanjutnya Prediksi Akhir didapatkan dari penjumlahan Prediksi ARIMA dengan Prediksi Residual oleh Machine Learning. Hasil evaluasi menunjukkan bahwa model hybrid ARIMA–SVM memberikan performa terbaik dengan nilai MSE sebesar 13.341,72, MAE sebesar 89,69, dan MAPE sebesar 0,9078%. Model ini juga memiliki nilai korelasi (R) tertinggi sebesar 0,9785. Sementara itu, model ARIMA–Gradient Boosting juga menunjukkan performa yang kompetitif dengan MSE sebesar 14.126,60 dan MAPE sebesar 0,9434%. Temuan ini menunjukkan bahwa pendekatan hybrid efektif dalam meningkatkan akurasi dan kestabilan prediksi saham, serta dapat dijadikan alternatif yang unggul dalam analisis pasar keuangan berbasis data historis.
Abstract
This study aims to analyze the performance of a hybrid method combining machine learning algorithms and the ARIMA model in predicting the stock prices of Bank BCA over the past five years. The data used were obtained from Yahoo Finance, covering the period from November 13, 2019, to November 12, 2024. The dataset consists of 1,210 records and includes seven variables: Date, Open, Close, High, Low, Volume, and Adjusted Close. The testing procedure involved modeling the linear component of the data using ARIMA, followed by predicting the residuals with machine learning algorithms, namely K-Nearest Neighbors (KNN), Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), Random Forest, and Gradient Boosting. The final prediction was obtained by summing the ARIMA forecast with the residual predictions from the machine learning models. Evaluation results show that the hybrid ARIMA–SVM model delivered the best performance with an MSE of 13,341.72, MAE of 89.69, and MAPE of 0.9078%, along with the highest correlation (R) value of 0.9785. The ARIMA–Gradient Boosting model also demonstrated competitive performance with an MSE of 14,126.60 and a MAPE of 0.9434%. These findings indicate that the hybrid approach is effective in enhancing the accuracy and stability of stock price predictions and can serve as a promising alternative in historical data-based financial market analysis.
Downloads
Referensi
ADITYA, P. T., ANDRIYADI, W., & SIDJAYA, J. A. 2023. Analisis Manajemen Stratejik: PT Bank Central Asia Tbk (BCA). Jurnalku, 3(1). https://doi.org/10.54957/jurnalku.v3i1.320
AFIATUDDIN, N., WICAKSONO, M. T., AKBAR, V. R., RAHMADDENI, R., & WULANDARI, D. 2024. Komparasi Algoritma Machine Learning dalam Klasifikasi Kanker Payudara. Jurnal Media Informatika Budidarma, 8(2), 889. https://doi.org/10.30865/mib.v8i2.7457
AKBAR, F., & RAHMADDENI. 2022. Jurnal Politeknik Caltex Riau Komparasi Algoritma Machine Learning untuk Memprediksi Penyakit Alzheimer. Jurnal Komputer Terapan, 8(2), 236–245. https://jurnal.pcr.ac.id/index.php/jkt/
AMRULLAH, A., SOESANTO, O., & MAISARAH, M. 2022. Penerapan Metode Hybrid Arima-Ann Untuk Memprediksi Harga Saham Pt. Bni (Persero) Tbk. RAGAM: Journal of Statistics & Its Application, 1(1), 52. https://doi.org/10.20527/ragam.v1i1.7328
FAISAL, A. 2021. PREDIKSI SAHAM TELKOM DENGAN METODE ARIMA. Jurnal Bisnis, Logistik Dan Supply Chain (BLOGCHAIN), 1(2). https://doi.org/10.55122/blogchain.v1i2.298
GIROH, H., KUMAR, V., & SINGH, G. (2023). Improving the Performance of Hybrid Models Using Machine Learning and Optimization Techniques. International Journal of Membrane Science and Technology, 10(2), 3396–3409. https://doi.org/10.15379/ijmst.v10i2.3138
HASTOMO, W., KARNO, A. S. B., KALBUANA, N., NISFIANI, E., & ETP, L. 2021. Optimasi Deep Learning untuk Prediksi Saham di. … (Jurnal Edukasi Dan …, 7(2), 133–140. https://jurnal.untan.ac.id/index.php/jepin/article/view/47411
KHAIRA, U., UTOMO, P. E. P., SURATNO, T., & GULO, P. C. S. 2021. Prediksi Indeks Harga Saham Gabungan (IHSG) Menggunakan Algoritma Autoregressive Integrated Moving Average (ARIMA). JUSS (Jurnal Sains Dan Sistem Informasi), 2(2), 11–17. https://doi.org/10.22437/juss.v2i2.8449
LATIF, N., SELVAM, J. D., KAPSE, M., SHARMA, V., & MAHAJAN, V. 2023. Comparative Performance of LSTM and ARIMA for the Short-Term Prediction of Bitcoin Prices. Australasian Accounting, Business and Finance Journal, 17(1). https://doi.org/10.14453/aabfj.v17i1.15
LIAO, Z., DAI, S., & KUOSMANEN, T. 2024. Convex support vector regression. European Journal of Operational Research, 313(3), 858–870. https://doi.org/10.1016/j.ejor.2023.05.009
MAHENDRA, B. H., CHAERANI, L., & GUMAY, G. 2023. Analisis Perbandingan Prediksi Harga Saham menggunakan Algoritma Artificial Neural Network dan Linear Regression. Jurnal Ilmiah Komputasi, 22(2), 303–312. https://doi.org/10.32409/jikstik.22.2.3357
MUHAMMAD ALI, P. J. 2022. Investigating the Impact of Min-Max Data Normalization on the Regression Performance of K-Nearest Neighbor with Different Similarity Measurements. Aro-the Scientific Journal of Koya University, 10(1), 85–91. https://doi.org/10.14500/aro.10955
NASIONAL, J., INFORMASI, S., CHRISTINA, N., & LINDA, T. 2024. Komparasi Algoritma Naïve Bayes dan Gradient Boosting untuk Prediksi Pasien Diabetes. 02, 118–125.
NATEKIN, A., & KNOLL, A. 2013. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7(DEC). https://doi.org/10.3389/fnbot.2013.00021
PIERRE, A. A., AKIM, S. A., SEMENYO, A. K., & BABIGA, B. (2023). Peak Electrical Energy Consumption Prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU Approaches. Energies, 16(12). https://doi.org/10.3390/en16124739
PUTERI, D. I. 2023. Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 11(1). https://doi.org/10.34312/euler.v11i1.19791
S, M. A. 2023. Prediksi Terkena Diabetes menggunakan Metode K-Nearest Neighbor (KNN) pada Dataset UCI Machine Learning Diabetes. Indonesian Journal of Applied Mathematics, 3(2), 15. https://doi.org/10.35472/indojam.v3i2.1577
SALUZA, I., SARTIKA, D., ASTUTI, L. W., FARADILLAH, F., DESITAMA, L., & PURNAMASARI, E. D. 2021. Prediksi Data Time Series Harga Penutupan Saham Menggunakan Model Box Jenkins ARIMA. Jurnal Ilmiah Informatika Global, 12(2). https://doi.org/10.36982/jiig.v12i2.1940
SAPUTRO, D., & SWANJAYA, D. 2023. Analisa Prediksi Harga Saham Menggunakan Neural Network Dan Net Foreign Flow. Generation Journal, 7(2). https://doi.org/10.29407/gj.v7i2.20001
SILMI ATH THAHIRAH AL AZHIMA, D. DARMAWAN, N. FAHMI ARIEF HAKIM, I. KUSTIAWAN, M. AL QIBTIYA, N. S. S. 2022. Hybrid Machine Learning Model Untuk Memprediksi Penyakit. Jurnal Teknologi Terpadu, 8(1), 40–46.
SOEWIGNJO, S., SEDIONO, MARDIANTO, M. F. F., & PUSPORANI, E. 2023. Prediksi Harga Saham Bank BCA (BBCA) Pasca Stock Split dengan Artificial Neural Network dengan Algoritma Backpropagation. G-Tech: Jurnal Teknologi Terapan, 7(4), 1683–1693. https://doi.org/10.33379/gtech.v7i4.3363
SUPRIYANTO, S., UTAMI, A. P., & ISTIKANAAH, N. 2023. Model Peramalan Harga Saham Menggunakan Metode Arima – Garch (Studi Kasus Saham Pt. Unilever Indonesia). Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 15(1), 1. https://doi.org/10.20884/1.jmp.2023.15.1.8658
WANG, G., LYU, Z., & LI, X. 2023. An Optimized Random Forest Regression Model for Li-Ion Battery Prognostics and Health Management. Batteries, 9(6). https://doi.org/10.3390/batteries9060332
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).












