Klasifikasi Rasa Buah Jeruk Pontianak (Citrus Nobilis Var. Microcarpa) Menggunakan Metode K-Cluster Classification Tree (K-CT)
DOI:
https://doi.org/10.25126/jtiik.2025126Kata Kunci:
Classification Tree, Decision Tree Learning, Jeruk Pontianak, K-means, Metode KlasifikasiAbstrak
Revolusi Industri 4.0 telah mendorong penggunaan teknologi di berbagai aspek kehidupan, seperti industri makanan, dengan konsep machine learning digunakan untuk mengidentifikasi kualitas dan rasa dari bahan makanan. Perkembangan teknologi ini mendorong pengembangan dari metode baru yang lebih efisien dalam waktu komputasi, namun memiliki kemampuan model prediktif yang akurat. Penelitian ini bertujuan untuk memperkenalkan sebuah metode ensemble baru yang mengkombinasikan metode classification tree (CT) dan metode k-means, yang disebut sebagai metode k-cluster classification tree atau k-CT. metode k-CT merupakan metode yang dirancang untuk mengefisiensikan waktu komputasi dari metode CT tanpa mengurangi kemampuan prediktif dari metode tersebut. Pada penelitian ini, metode k-CT divalidasi menggunakan data primer yang diambil dari pengamatan sifat fisik dari buah jeruk Pontianak. Dari 457 sampel data yang ada, 80% data digunakan untuk melatih model pohon, sedangkan 20% yang tersisa digunakan untuk memvalidasi kualitas prediksi dari model. Berdasarkan pada percobaan yang dilakukan, diperoleh 3 temuan. Pertama, metode k-CT dapat mengklasifikasikan rasa dari buah jeruk Pontianak dengan akurasi sebesar 92%. Hasil ini menunjukan bahwa metode k-CT memiliki performa model prediktif yang lebih baik jika dibandingkan dengan metode CT, random forest dan gradient boosting. Kedua, ditemukan bukti lemah secara statistik ( bahwa metode k-CT memiliki kompleksitas waktu yang lebih singkat daripada metode CT, sesuai dengan Lema yang dibuktikan. Ketiga, berdasarkan pada aturan jika – maka yang dibentuk oleh metode k-CT, diketahui bahwa warna jeruk bukanlah faktor dominan yang menentukan rasa dari buah jeruk, melainkan diameter buah jeruk yang merupakan faktor dominan untuk menentukan rasa buah jeruk.
Abstract
The Industrial Revolution 4.0 has driven the integration of technology into various aspects of life, including the food and beverage industry, where machine learning methods are employed to evaluate food quality and taste. Consequently, the development of efficient machine learning techniques that provide accurate predictions with reduced computational complexity has become increasingly important. This research introduces a novel classification tree (CT)-based algorithm, termed the k-cluster classification tree (k-CT). The k-CT enhances the CT method by offering faster computations while preserving its predictive accuracy. The proposed methodology was validated using a primary dataset comprising the physical properties of “jeruk Pontianak” (Citrus nobilis var. microcarpa) oranges. Of the 457 available samples, 80% were utilized for training the tree-based models, while the remaining 20% were reserved for validating predictive accuracy. The experiments yielded three key findings. First, the k-CT achieved an accuracy of 92% in classifying the taste of “jeruk Pontianak,” outperforming CT, random forest, and gradient boosting methods. Second, there is weak evidence (α < 0.1) suggesting that the k-CT performs faster than the CT method. Lastly, based on the if-then rules derived from the k-CT tree structure, it was observed that the skin color of “jeruk Pontianak” does not significantly influence its taste. Instead, the diameter of the fruit has a strong impact on its taste.
Downloads
Referensi
AGHAEI, S., GÓMEZ, A., & VAYANOS, P., 2024. Strong Optimal Classification Trees. Operations Research.
AHMED, M., SERAJ, R. , & ISLAM, S.M.S., 2020. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, 9(8), p.1295.
AULIA, I., WIJAYA, D.R. , & HIDAYAT, W., 2021. Rice Quality Detection Using Gradient Tree Boosting Based On Electronic Nose Dataset. In: 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS). IEEE. pp.1–5.
AVERÓS, X., LAVÍN, J.L., & ESTEVEZ, I., 2024. The potential of decision trees as a tool to simplify broiler chicken welfare assessments. Scientific Reports, 14(1), p.22943.
BHARGAVA, A., & BANSAL, A., 2020. Automatic Detection and Grading of Multiple Fruits by Machine Learning. Food Analytical Methods, 13(3), pp.751–761.
BHATTACHARYYA, S.K., & PAL, S., 2024. Design and performance analysis of decision tree learning model for classification of dry and cooked rice samples. European Food Research and Technology, 250(10), pp.2529–2544.
CHARBUTY, B., & ABDULAZEEZ, A., 2021. Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), pp.20–28.
DRAGOMIR, S.S., 2021. Superadditivity of convex integral transform for positive operators in Hilbert spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115(3), p.98.
FARAH, J.S., CAVALCANTI, R.N., GUIMARÃES, J.T., BALTHAZAR, C.F., COIMBRA, P.T., PIMENTEL, T.C., ESMERINO, E.A., DUARTE, M.C.K.H., FREITAS, M.Q., GRANATO, D., NETO, R.P.C., TAVARES, M.I.B., CALADO, V., SILVA, M.C., & CRUZ, A.G., 2021. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity. Food Control, 121, p.107585.
HAND, D.J., 2020. Artificial Intelligence Frontiers in Statistics. Chapman and Hall/CRC.
HASSOUN, A., JAGTAP, S., GARCIA-GARCIA, G., TROLLMAN, H., PATEIRO, M., LORENZO, J.M., TRIF, M., RUSU, A.V., AADIL, R.M., ŠIMAT, V., CROPOTOVA, J., & CÂMARA, J.S., 2023. Food quality 4.0: From traditional approaches to digitalized automated analysis. Journal of Food Engineering, 337, p.111216.
HEMAMALINI, V., RAJARAJESWARI, S., NACHIYAPPAN, S., SAMBATH, M., DEVI, T., SINGH, B.K., & RAGHUVANSHI, A., 2022. Food Quality Inspection and Grading Using Efficient Image Segmentation and Machine Learning-Based System. Journal of Food Quality, 2022, pp.1–6.
IKOTUN, A.M., EZUGWU, A.E., ABUALIGAH, L., ABUHAIJA, B., & HEMING, J., 2023. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, pp.178–210.
JAMES, G., WITTEN, D., HASTIE, T., TIBSHIRANI, R., & TAYLOR, J., 2023. Tree-Based Methods. pp.331–366.
JI, H., PU, D., YAN, W., ZHANG, Q., ZUO, M., & ZHANG, Y., 2023. Recent advances and application of machine learning in food flavor prediction and regulation. Trends in Food Science & Technology, 138, pp.738–751.
JIMÉNEZ-CARVELO, A.M., GONZÁLEZ-CASADO, A., BAGUR-GONZÁLEZ, M.G., & CUADROS-RODRÍGUEZ, L., 2019. Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity – A review. Food Research International, 122, pp.25–39.
KONUR, S., LAN, Y., THAKKER, D., MORKYANI, G., POLOVINA, N., & SHARP, J., 2023. Towards design and implementation of Industry 4.0 for food manufacturing. Neural Computing and Applications, 35(33), pp.23753–23765.
MASCELLANI, A., HOCA, G., BABISZ, M., KRSKA, P., KLOUCEK, P., HAVLIK, & J., 2021. 1H NMR chemometric models for classification of Czech wine type and variety. Food Chemistry, 339, p.127852.
NILASHI, M., AHMADI, H., ARJI, G., ALSALEM, K.O., SAMAD, S., GHABBAN, F., ALZAHRANI, A.O., AHANI, A., & ALAROOD, A.A., 2021. Big social data and customer decision making in vegetarian restaurants: A combined machine learning method. Journal of Retailing and Consumer Services, 62, p.102630.
ROJAS, C., BALLABIO, D., CONSONNI, V., SUÁREZ-ESTRELLA, D., & TODESCHINI, R., 2023. Classification-based machine learning approaches to predict the taste of molecules: A review. Food Research International, 171, p.113036.
SARKER, I.H., 2021. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), p.160.
SINGH, A., VAIDYA, G., JAGOTA, V., DARKO, D.A., AGARWAL, R.K., DEBNATH, S., & POTRICH, E., 2022. Recent Advancement in Postharvest Loss Mitigation and Quality Management of Fruits and Vegetables Using Machine Learning Frameworks. Journal of Food Quality, 2022, pp.1–9.
SMARRA, F., TJEN, J., & D’INNOCENZO, A., 2022. Learning methods for structural damage detection via entropy‐based sensors selection. International Journal of Robust and Nonlinear Control, 32(10), pp.6035–6067.
TJEN, J., 2024. Identifikasi Parameter Kualitas Bahan Pangan dengan Metode Entropy-Based Subset Selection (E-SS) (Studi Kasus: Minuman Anggur). Jurnal Teknologi Informasi dan Ilmu Komputer, 11(1), pp.47–54.
ZENG, X., CAO, R., XI, Y., LI, X., YU, M., ZHAO, J., CHENG, J., & LI, J., 2023. Food flavor analysis 4.0: A cross-domain application of machine learning. Trends in Food Science & Technology, 138, pp.116–125.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).












