Analisis Kelelahan Otot pada Pengemudi Menggunakan Root Mean Square Slope Berbasis Sinyal Electromyogram

Penulis

  • Muhammad Rava Athalla Fakultas Ilmu Komputer, Universitas Brawijaya, Malang
  • Edita Rosana Widasari Fakultas Ilmu Komputer, Universitas Brawijaya, Malang

DOI:

https://doi.org/10.25126/jtiik.2025126

Kata Kunci:

Kelelahan otot, Electromyogram, Root Mean Square Slope, Shimmer EMG, Simulasi Mengemudi, Pemantauan real-time

Abstrak

Kelelahan otot pada pengemudi, terutama pada otot biceps brachii yang berperan penting dalam pengendalian setir kendaraan yang berpotensi menurunkan kestabilan dan konsentrasi gerak mikro saat berkendara jarak jauh atau dalam kondisi lalu lintas yang memaksa posisi statis. Sebagian besar sistem deteksi kelelahan berfokus pada citra wajah, mata, atau pola berkendara, sedangkan kajian terhadap kelelahan otot lokal masih jarang dilakukan. Penelitian ini memosisikan deteksi kelelahan otot sebagai lapisan komplementer, bukan pengganti untuk mendukung sistem deteksi kantuk dan kelelahan mental yang telah lebih banyak dikembangkan. Penelitian ini mengusulkan pendekatan berbasis sinyal electromyogram (EMG) dengan parameter Root Mean Square (RMS) Slope untuk mendeteksi kelelahan otot biceps brachii. Data EMG diperoleh dari lima subjek pria berusia 21–22 tahun menggunakan sensor Shimmer EMG selama simulasi mengemudi mobil penumpang dengan simulator PXN V900. Sinyal EMG direkam pada frekuensi sampling 1000 Hz, kemudian diproses melalui tahapan pra-pemrosesan dan penyaringan untuk meminimalkan noise. Hasil penelitian menunjukkan bahwa sinyal EMG yang terekam konsisten berada dalam rentang milivolt sesuai dengan spesifikasi sensor. Sistem deteksi kelelahan otot mencapai akurasi 75% melalui ekstraksi fitur RMS dan klasifikasi berbasis RMS Slope. Selain itu, sistem memiliki rata-rata waktu komputasi 0,080 second per jendela 1 detik, yang cukup cepat untuk pemantauan real-time. Dengan kemampuan ini, sistem menunjukkan potensi penerapan sebagai komponen tambahan dalam meningkatkan keselamatan berkendara.

 

Abstract

Muscle fatigue in drivers, particularly in the biceps brachii which plays a key role in steering control, may compromise driving stability and fine-motor concentration during long trips or under traffic conditions requiring a static posture. Most existing fatigue detection systems focus on facial cues, eye movements, or driving patterns, while localized muscle fatigue has rarely been explored. This study positions muscle fatigue detection as a complementary layer, rather than a replacement, to support mental and drowsiness detection systems that have been more widely developed. An approach using electromyogram (EMG) signals and the Root Mean Square (RMS) Slope parameter is proposed to detect biceps brachii fatigue. EMG data were collected from five male subjects aged 21–22 years using Shimmer EMG sensors during passenger car driving simulations with a PXN V900 steering simulator. The signals were recorded at a 1000 Hz sampling rate and processed with pre-processing and filtering stages to minimize noise. Results show that the recorded EMG signals consistently remained within the millivolt range, in accordance with sensor specifications. The system achieved 75% detection accuracy through RMS feature extraction and RMS Slope classification. In addition, the average computation time was 0.080 per 1-second window, fast enough for real-time monitoring. These findings highlight the potential of integrating localized muscle fatigue detection as a complementary component to enhance driving safety.

Downloads

Download data is not yet available.

Referensi

ADYTAMA, S. DAN MULIAWAN, P. 2020. 'Kelelahan Kerja dan Determinan pada Pengemudi Minibus Antar Provinsi Jawa-Bali Tahun 2019'. Arc. Com. Health, 7(2), pp.107-118.

AL-MEKHLAFI, A.A., ISHA, A.S.N. DAN NAJI, G.M.A. 2020. 'The Relationship Between Fatigue and Driving Performance: A Review and Directions for Future Research'. Journal of Critical Reviews, 7(14), pp.1-10.

AZLI, M.A., MUSTAFA, M., ABDUBRANI, R., HADI, A.A., SYED AHMAD, S.N.A. DAN ZAHARI, Z.L. 2019. 'Electromyograph (EMG) Signal Analysis to Predict Muscle Fatigue During Driving'. Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018, pp.405-420.

BADAN PUSAT STATISTIK INDONESIA. 2023a. 'Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi, 2021-2022'. Tersedia di:

https://www.bps.go.id/id/statistics-table/2/NTEzIzI=/jumlah-kecelakaan--korban-mati--luka-berat--luka-ringan--dan-kerugian-materi.html [Diakses 9 Desember 2024].

BADAN PUSAT STATISTIK INDONESIA. 2023b. 'Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (Unit), 2021-2022'. Tersedia di: https://www.bps.go.id/id/statistics-table/2/NTcjMg==/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis--unit-.html [Diakses 9 Desember 2024].

BRUNO, M. 2023. 'Analisi delle prestazioni muscolari negli scalatori: resistenza e fatica mioelettrica valutate tramite HD-sEMG in atleti di livello intermedio e avanzato'. Master's Thesis, pp. 40-55.

EBIED, A., AWADALLAH, A.M., ABBASS, M.A. DAN EL-SHARKAWY, Y. 2020. 'Upper limb muscle fatigue analysis using multi-channel surface EMG'. 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 423-427.

FATHIMA, S.P., JOJO, D., GAYATHRI, A.V. DAN SIDHARTH, V.G. 2020. 'Fatigue Analysis of Biceps Brachii Muscle Using sEMG Signal'. Proceedings of CISCON2020, pp.1-5.

GAROUCHE, M. DAN THAMSUWAN, O. 2023. 'Development of a Low-Cost Portable EMG for Measuring the Muscular Activity of Workers in the Field'. Sensors, 23(7), pp.7873-7890.

KUNDU, B. DAN NAIDU, D.S. 2021. 'Classification and Feature Extraction of Different Hand Movements from EMG Signal using Machine Learning based Algorithms'. Proceedings of the 3rd International Conference on Electrical, Communication and Computer Engineering (ICECCE), pp.1-5.

MARSON, R.A., DE SOUSA, N.M.F., SCOZ, R.D., MENDES, J.J.B., FERREIRA, L.M.A., DE MELO, M.A.A., BALDISSERA, V., FREITAS, L.F. DAN AMORIM, C.F. 2023. 'Different smoothing window lengths can estimate the neuromuscular fatigue threshold at the same intensity of the lactate threshold during the leg press exercise'. The Open Sports Sciences Journal, pp. 16.

RAHARJO, A.B., FATKHURROZI, B. DAN NAWAWI, I. 2020. 'Analisis Sinyal Electromyography (EMG) pada Otot Biceps Brachii untuk Mendeteksi Kelelahan Otot dengan Metode Median Frekuensi'. THETA OMEGA: Journal of Electrical Engineering, Computer and Information Technology, 1(1), pp.1-7.

SHIMMER Sensing. 2024. Shimmer3 EMG User Guide / Specifications. Dublin: Shimmer Sensing.

SUMATHIPALA, S., ERANDA, S., WEERASINGHE, D., GUNASEKARA, T. DAN JAYAKODY, M. 2020. 'Drowsiness Detection and Alert System for Motorcyclist Safety'. In: 20th International Conference on Advances in ICT for Emerging Regions (ICTer), pp.101-106.

SYAMSUL, M.A. DAN RAHMANSYAH, S.F. 2023. 'Faktor yang mempengaruhi kelelahan kerja pada sopir rental antar kabupaten Morowali Utara ke Kota Makassar'. OHSE Media, 7(2), pp. 23-28.

TSAI, Y.-C., LAI, P.-W., HUANG, P.-W., LIN, T.-M. DAN WU, B.-F. 2020. ‘Vision-Based Instant Measurement System for Driver Fatigue Monitoring. IEEE Access, 8, pp. 67342–67353.

TOLEDO-PÉREZ, D.C., RODRÍGUEZ-RESÉNDIZ, J., GÓMEZ-LOENZO, R.A. DAN JAUREGUI-CORREA, J.C. 2019. 'Support vector machine-based EMG signal classification techniques: A review'. Applied Sciences, 9(20), p.4402.

WANG, S., TANG, H., WANG, B. DAN MO, J. 2023. 'A Novel Approach to Detecting Muscle Fatigue Based on sEMG by Using Neural Architecture Search Framework'. IEEE Transactions on Neural Networks and Learning Systems, 34(8), pp.3212-3223.

Diterbitkan

17-12-2025

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Analisis Kelelahan Otot pada Pengemudi Menggunakan Root Mean Square Slope Berbasis Sinyal Electromyogram. (2025). Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(6), 1327-1336. https://doi.org/10.25126/jtiik.2025126