Analisis Optimasi Klasifikasi Citra Awan Berdasarkan Nilai Hyperparameter Pada Teachable Machine untuk Pengembangan Aplikasi Web Mobile
DOI:
https://doi.org/10.25126/jtiik.2025126Kata Kunci:
teachable machine, deteksi objek, jenis awan, convolutional neural networks, optimalisasi citraAbstrak
Pengamatan cuaca menjadi aspek penting dalam berbagai bidang seperti meteorologi, penelitian lingkungan dan penerbangan. Identifikasi jenis awan memainkan peran kunci dalam memprediksi perubahan cuaca dan mengevaluasi dampak lingkungan. Tujuan dari penelitian ini adalah untuk mengembangkan sebuah aplikasi web mobile sistem cerdas yang mampu membantu masyarakat dalam mendeteksi jenis awan secara mandiri di sekitar, memberikan edukasi tentang jenis awan dan yang paling penting adalah mencari nilai optimasi hyperparameter epoch, batch size dan learning rate dalam Teachable Machine. Penelitian ini menggunakan nilai untuk parameter-parameter yang diteliti, yaitu nilai epoch yang bervariasi antara 10, 50, 100, 250, 750 dan 1000. Kemudian nilai batch size yang bervariasi antara 16, 32, 64, 128, 256 dan 512 serta learning rate yang bervariasi antara 0,00001; 0,0001; 0,001; 0,01; 0,1 dan 1. Total dataset sebanyak 4.000 sampel data latih (400 sampel dalam 10 kelas) digunakan dalam Teachable Machine. Metode yang digunakan adalah dengan memanfaatkan framework TensorFlow pada layanan Teachable Machine untuk melatih data citra atau gambar. Framework ini menyediakan algoritma Convolutional Neural Networks (CNN) yang dapat melakukan klasifikasi citra atau gambar dengan tingkat akurasi yang tinggi. Hasil pengujian menunjukkan bahwa nilai optimal tertinggi tercapai pada nilai epoch ke-50, dengan nilai batch size 16 dan learning rate 0,00001 yang menghasilkan tingkat akurasi antara 70% hingga 98%. Aplikasi web mobile ini diharapkan dapat diimplementasikan secara luas untuk kepentingan masyarakat agar mengenali jenis awan yang menyebabkan potensi hujan.
Abstract
Weather observation is becoming an increasingly important aspect in various fields, such as Meteorology, Environmental Research, and aviation. The identification of cloud types plays a key role in predicting weather changes and evaluating environmental impacts. The purpose of this study is to develop a mobile web application intelligent system that is able to help people detect the type of cloud independently around, provide education about the type of cloud, and most importantly, find the value of optimization hyperparameter epoch, batch size and learning rate in Teachable Machine. This study uses the values for the parameters studied, namely the epoch values that vary between 10, 50, 100, 250, 750, and 1000. Then the value of batch size varies between 16, 32, 64, 128, 256, and 512, and the learning rate varies between 0.00001; 0.0001; 0.001; 0.01; 0.1, and 1. A total of 4,000 training data samples (400 samples per class) were used in the Teachable Machine. The method used is to utilize the TensorFlow framework in the Teachable Machine Service to train image or image data. This Framework provides Convolutional Neural Networks (CNN) algorithms that can classify images with a high degree of accuracy. The test results showed that the highest optimal value was reached at the 50th epoch value, with a batch size value of 16 and a learning rate of 0.00001 which resulted in an accuracy rate of 70% to 98%. This application is expected to be widely implemented for the benefit of the community in order to recognize the type of cloud that causes the potential for rain.
Downloads
Referensi
AGUSTIAN, D., PERTAMA, P.P.G.P., CRISNAPATI, P.N., NOVAYANTI, P.D., 2021. Implementation of Machine Learning Using Google’s Teachable Machine Based on Android, in: 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS). IEEE, pp. 1–7. https://doi.org/10.1109/ICORIS52787.2021.9649528
AJIT, A., ACHARYA, K., SAMANTA, A., 2020. A Review of Convolutional Neural Networks, in: 2020 International Conference on Emerging Trends in Information Technology and Engineering (Ic-ETITE). IEEE, pp. 1–5. https://doi.org/10.1109/ic-ETITE47903.2020.049
ALABASSY, B., SAFAR, M., EL-KHARASHI, M.W., 2020. A High-Accuracy Implementation for Softmax Layer in Deep Neural Networks, in: 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, pp. 1–6. https://doi.org/10.1109/DTIS48698.2020.9081313
ALDIN, N.B., ALDIN, S.S.A.B., 2022. Accuracy Comparison of Different Batch Size for a Supervised Machine Learning Task with Image Classification, in: 2022 9th International Conference on Electrical and Electronics Engineering (ICEEE). IEEE, pp. 316–319. https://doi.org/10.1109/ICEEE55327.2022.9772551
ÀLEX R. ATRIO, ANDREI POPESCU-BELIS, 2022. Small Batch Sizes Improve Training of Low-Resource Neural MT.
ALZUBAIDI, L., ZHANG, J., HUMAIDI, A.J., Al-DUJAILI, A., DUAN, Y., AL-SHAMMA, O., SANTAMARIA, J., FADHEL, M.A., AL-AMIDIE, M., FARHAN, L., 2021. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J Big Data 8, 53. https://doi.org/10.1186/s40537-021-00444-8
ANWAR, C., 2022. Deteksi Objek Berbasis Web Menggunakan Tensorflow Js dan Coco Dataset pada Framework React Js. Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) 5, 1008–1015. https://doi.org/10.32672/jnkti.v5i6.5464
BALWANT, M.K., 2022. A Review on Convolutional Neural Networks for Brain Tumor Segmentation: Methods, Datasets, Libraries, and Future Directions. IRBM 43, 521–537. https://doi.org/10.1016/j.irbm.2022.05.002
BASHA, S.H.S., DUBEY, S.R., PULABAIGARI, V., MUKHERJEE, S., 2020. Impact of Fully Connected Layers on Performance of Convolutional Neural Networks for Image Classification. Neurocomputing 378, 112–119. https://doi.org/10.1016/j.neucom.2019.10.008
BHUGWAN, D., RANCHOD, P., KLEIN, R., ROSMAN, B., 2019. A Comparison Between Fully Connected and Deconvolutional Layers for Road Segmentation from Satellite Imagery, in: 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). IEEE, pp. 117–122. https://doi.org/10.1109/RoboMech.2019.8704849
CAO, D., CHEN, Z., GAO, L., 2020. An Improved Object Detection Algorithm Based on Multi-Scaled and Deformable Convolutional Neural Networks. Human-centric Computing and Information Sciences 10, 14. https://doi.org/10.1186/s13673-020-00219-9
CARNEY, M., WEBSTER, B., ALVARADO, I., PHILLIPS, K., HOWEL, N., GRIFFITH, J., JONGEJAN, J., PITARU, A., CHEN, A., 2020. Teachable Machine: Approachable Web-Based Tool for Exploring Machine Learning Classification, in: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, pp. 1–8. https://doi.org/10.1145/3334480.3382839
CHAUHAN, R., GHANSHALA, K.K., JOSHI, R.C., 2018. Convolutional Neural Network (CNN) for Image Detection and Recognition, in: 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). IEEE, pp. 278–282. https://doi.org/10.1109/ICSCCC.2018.8703316
CHEN, L., LI, S., BAI, Q., YANG, J., JIANG, S., MIAO, Y., 2021. Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sens (Basel) 13, 4712. https://doi.org/10.3390/rs13224712
CHEN, S., 2023. CNN Combined with Data Augmentation for Face Recognition on Small Dataset. J Phys Conf Ser 2634, 012040. https://doi.org/10.1088/1742-6596/2634/1/012040
CUI, J., LI, XUEWEI, ZHAO, H., WANG, H., LI, B., LI, XI, 2024. Epoch-Evolving Gaussian Process Guided Learning for Classification. IEEE Trans Neural Netw Learn Syst 35, 326–337. https://doi.org/10.1109/TNNLS.2022.3174207
DAS, N., DAS, S., 2023. Epoch and accuracy based empirical study for cardiac MRI segmentation using deep learning technique. PeerJ 11, e14939. https://doi.org/10.7717/peerj.14939
DAWSON, H.L., DUBRULE, O., JOHN, C.M., 2023. Impact of Dataset Size and Convolutional Neural Network Architecture on Transfer Learning for Carbonate Rock Classification. Comput Geosci 171, 105284. https://doi.org/10.1016/j.cageo.2022.105284
DHANDE, G., SHAIKH, Z., 2019. Analysis of Epochs in Environment based Neural Networks Speech Recognition System, in: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, pp. 605–608. https://doi.org/10.1109/ICOEI.2019.8862728
DUKHAN, M., ABLAVATSKI, A., 2020. Two-Pass Softmax Algorithm, in: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, pp. 386–395. https://doi.org/10.1109/IPDPSW50202.2020.00074
EDWIN ARIESTO UMBU MALAHINA, 2023. Teachable Machine: Deteksi Dialek Sumba Timur (Kambera) Menggunakan Layanan Open Source. Jurnal Nasional Teknik Elektro dan Teknologi Informasi 12, 280–286. https://doi.org/10.22146/jnteti.v12i4.8174
FABIANO PEREIRA de OLIVIERA, CHRISTIANE GRESSE von WANGENHEIM, JEAN C. R. HAUCK, 2022. TMIC: App Inventor Extension for the Deployment of Image Classification Models Exported from Teachable Machine.
FAJRI, F.N., MALIK, K., PRATAMASUNU, G.Q.O., 2022. Metode Pengumpulan Data Pada Deteksi Pakaian Hijab Syar’I Berdasarkan Citra Digital Menggunakan Teachable machine Learning. Justek : Jurnal Sains dan Teknologi 5, 194. https://doi.org/10.31764/justek.v5i2.11614
FARAHANI, A., POURSHOJAE, B., RASHEED, K., ARABNIA, H.R., 2020. A Concise Review of Transfer Learning, in: 2020 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, pp. 344–351. https://doi.org/10.1109/CSCI51800.2020.00065
FELIX, F., WIJAYA, J., SUTRA, S.P., KOSASIH, P.W., SIRAIT, P., 2020. Implementasi Convolutional Neural Network Untuk Identifikasi Jenis Tanaman Melalui Daun. Jurnal SIFO Mikroskil 21, 1–10. https://doi.org/10.55601/jsm.v21i1.672
GERARD, C., 2021. TensorFlow.js, in: Practical Machine Learning in JavaScript. Apress, Berkeley, CA, pp. 25–43. https://doi.org/10.1007/978-1-4842-6418-8_2
HABSAH, A.P., AS’ARI, R., NINGSIH, M.P., 2023. Meningkatkan Penguasaan Konsep Materi Klasifikasi Awan Melalui Model Pembelajaran Discovery Learning. SOSEARCH : Social Science Educational Research 3, 81–86. https://doi.org/10.26740/sosearch.v3n2.p81-86
HUSSAIN, M., BIRD, J.J., FARIA, D.R., 2019. A Study on CNN Transfer Learning for Image Classification. pp. 191–202. https://doi.org/10.1007/978-3-319-97982-3_16
JOHNY, A., MADHUSOODANAN, K.N., 2021. Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images. Comput Math Methods Med 2021, 1–13. https://doi.org/10.1155/2021/5557168
KALAYCI, T.A., ASAN, U., 2022. Improving Classification Performance of Fully Connected Layers by Fuzzy Clustering in Transformed Feature Space. Symmetry (Basel) 14, 658. https://doi.org/10.3390/sym14040658
KANDEL, I., CSTELLI, M., 2020. The Effect of Batch Size on the Generalizability of the Convolutional Neural Networks on a Histopathology Dataset. ICT Express 6, 312–315. https://doi.org/10.1016/j.icte.2020.04.010
LEE, C.-Y., GALLAGHER, P., TU, Z., 2018. Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree. IEEE Trans Pattern Anal Mach Intell 40, 863–875. https://doi.org/10.1109/TPAMI.2017.2703082
LEI, J., LUO, X., FANG, L., WANG, M., GU, Y., 2020. Region-Enhanced Convolutional Neural Network for Object Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing 58, 5693–5702. https://doi.org/10.1109/TGRS.2020.2968802
LIU, H., FU, Q., DU, L., ZHANG, T., YU, G., HAN, S., ZHANG, D., 2022. Learning Rate Perturbation: A Generic Plugin of Learning Rate Schedule towards Flatter Local Minima, in: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. ACM, New York, NY, USA, pp. 4234–4238. https://doi.org/10.1145/3511808.3557626
LIU, X., JIANG, S., WU, R., SHU, W., HOU, J., SUN, Y., SUN, J., CHU, D., WU, Y., SONG, H., 2023. Automatic Taxonomic Identification Based on the Fossil Image Dataset (415,000 images) and Deep Convolutional Neural Networks. Paleobiology 49, 1–22. https://doi.org/10.1017/pab.2022.14
LOEY, M., MANOGARAN, G., KHALIFA, N.E.M., 2020. A Deep Transfer Learning Model with Classical Data Augmentation and CGAN to Detect COVID-19 from Chest CT Radiography Digital Images. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05437-x
LU, J., BEHBOOD, V., HAO, P., ZUO, H., XUE, S., ZHANG, G., 2015. Transfer Learning Using Computational Intelligence: A Survey. Knowl Based Syst 80, 14–23. https://doi.org/10.1016/j.knosys.2015.01.010
LU, K.-W., LIU, P., HONG, D.-Y., WU, J.-J., 2022. Efficient Dual Batch Size Deep Learning for Distributed Parameter Server Systems, in: 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, pp. 630–639. https://doi.org/10.1109/COMPSAC54236.2022.00110
LU, Q., LIU, C., JIANG, Z., MEN, A., YANG, B., 2017. G-CNN: Object Detection via Grid Convolutional Neural Network. IEEE Access 5, 24023–24031. https://doi.org/10.1109/ACCESS.2017.2770178
MALAHINA, E.A.U., HADJON, R.P., BISILISIN, F.Y., 2022. Teachable Machine: Real-Time Attendance of Students Based on Open Source System. The IJICS (International Journal of Informatics and Computer Science) 6, 140. https://doi.org/10.30865/ijics.v6i3.4928
MATHEW, M.P., MAHESH, T.Y., 2021. Object Detection Based on Teachable Machine. Journal of VLSI Design and Signal Processing 7. https://doi.org/10.46610/JOVDSP.2021.v07i02.003
MOHD SAFUAN, S.N., MD TOMARI, M.R., WAN ZAKARIA, W.N., 2022. Cross Validation Analysis of Convolutional Neural Network Variants with Various White Blood Cells Datasets for the Classification Task. International Journal of Online and Biomedical Engineering (iJOE) 18, 123–140. https://doi.org/10.3991/ijoe.v18i02.27321
NANDAN CHALLAPALLI, S.S., MISHRA, G., PACHAURI, Y., MISHRA, A., KUMAR, S.R., KUMAR, L., 2023. Comparing TensorFlow.js and TensorFlow in Python: An Accessibility and Usage Analysis, in: 2023 6th International Conference on Contemporary Computing and Informatics (IC3I). IEEE, pp. 250–254. https://doi.org/10.1109/IC3I59117.2023.10397702
NI KOMANG RAI MIRAYANTI, SARIYASA SARIYASA, I GEDE ARIS GUNADI, 2023. Batch Size and Learning Rate Effect in COVID-19 Classification Using CNN 7.
NURFITA, R.D., ARIYANTO, G., 2018. Implementasi Deep Learning berbasis Tensorflow untuk Pengenalan Sidik Jari. Emitor: Jurnal Teknik Elektro 18, 22–27. https://doi.org/10.23917/emitor.v18i01.6236
NURJANNAH, A.F., KURNIASARI, A.S.D., SARI, Z., AZHAR, Y., 2022. Pneumonia Image Classification Using CNN with Max Pooling and Average Pooling. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, 330–338. https://doi.org/10.29207/resti.v6i2.4001
OZDEMIR, C., DOGAN, Y., KAYA, Y., 2023. A New Local Pooling Approach for Convolutional Neural Network: Local Binary Pattern. Multimed Tools Appl 83, 34137–34151. https://doi.org/10.1007/s11042-023-17540-x
PAN, J., 2022. The impact of learning rate and data size on CNN for skin cancer detection, in: Yusof, Y. (Ed.), Second International Conference on Medical Imaging and Additive Manufacturing (ICMIAM 2022). SPIE, p. 28. https://doi.org/10.1117/12.2636723
PIAO, X., SYNN, D., PARK, J., KIM, J.-K., 2023. Enabling Large Batch Size Training for DNN Models Beyond the Memory Limit While Maintaining Performance. IEEE Access 11, 102981–102990. https://doi.org/10.1109/ACCESS.2023.3312572
RAUBER, R., 2018. Clouds and Vertical Motions, in: Radar Meteorology. Wiley, pp. 413–435. https://doi.org/10.1002/9781118432662.ch17
REID, J.S., MARING, H.B., NARISMA, G.T., VAN den HEEVER, S., GIROLAMO, L. DI, FERRARE, R., LAWSON, P., MACE, G.G., SIMPAS, J.B., TANELLI, S., ZIEMBA, L., VAN DIEDENHOVEN, B., BRUINTJES, R., BUCHOLTZ, A., CAIRNS, B., CAMBALIZA, M.O., CHEN, G., DISKIN, G.S., FLYNN, J.H., HOSTLETER, C.A., HOLZ, R.E., LANG, T.J., SCHMID, K.S., SMITH, G., SOROOSIAN, A., THOMPSON, E.J., THORNHILL, K.L., TREPTE, C., WANG, J., WOODS, S., YOON, S., ALEXANDROV, M., ALVAREZ, S., AMIOT, C.G., BENNETT, J.R., BROOKS, M., BURTON, S.P., CAYANAN, E., CHEN, H., COLLOW, A., CROSBIE, E., DaSILVA, A., DiGANGI, J.P., FLAGG, D.D., FREEMAN, S.W., FU, D., FUKADA, E., HILARIO, M.R.A., HONG, Y., HRISTOVA-VELEVA, S.M., KUEHN, R., KOWCH, R.S., LEUNG, G.R., LOVERIDGE, J., MEYER, K., MILLER, R.M., MONTES, M.J., MOUM, J.N., NENES, A., NESBITT, S.W., NORGREN, M., NOWOTTNICK, E.P., RAUBER, R.M., REID, E.A., RUTLEDGE, S., SCHLOSSER, J.S., SEKIYAMA, T.T., SHOOK, M.A., SOKOLOWSKY, G.A., STAMNES, S.A., TANAKA, T.Y., WASILEWSKI, A., XIAN, P., XIAO, Q., XU, Z., ZAVALETA, J., 2023. The Coupling Between Tropical Meteorology, Aerosol Lifecycle, Convection, and Radiation during the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex). Bull Am Meteorol Soc 104, E1179–E1205. https://doi.org/10.1175/BAMS-D-21-0285.1
RIVERA, J.D.D.S., 2020. Practical TensorFlow.js. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-6273-3
ROCHMAWATI, N., HIDAYATI, H.B., YAMASARI, Y., TJAHYANINGTIJAS, H.P.A., YUSTANTI, W., PRIHANTONO, A., 2021. Analisa Learning Rate dan Batch Size pada Klasifikasi Covid Menggunakan Deep Learning dengan Optimizer Adam. Journal of Information Engineering and Educational Technology 5, 44–48. https://doi.org/10.26740/jieet.v5n2.p44-48
SALIM, S., JAMIL, M.M.A., AMBAR, R., ZAKI, W.S.W., MOHAMMAD, S., 2023a. Learning Rate Optimization for Enhanced Hand Gesture Recognition using Google Teachable Machine, in: 2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, pp. 332–337. https://doi.org/10.1109/ICCSCE58721.2023.10237148
SALIM, S., JAMIL, M.M.A., AMBAR, R., ZAKI, W.S.W., MOHAMMAD, S., 2023b. Learning Rate Optimization for Enhanced Hand Gesture Recognition using Google Teachable Machine, in: 2023 IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, pp. 332–337. https://doi.org/10.1109/ICCSCE58721.2023.10237148
SARI, Y., ARIFIN, Y.F., NOVITASARI, FAISAL, M.R., 2022. The Effect of Batch Size and Epoch on Performance of ShuffleNet-CNN Architecture for Vegetation Density Classification, in: 7th International Conference on Sustainable Information Engineering and Technology 2022. ACM, New York, NY, USA, pp. 39–46. https://doi.org/10.1145/3568231.3568239
ŞEN, Z., 2020. Meteorology. pp. 7–52. https://doi.org/10.1007/978-3-030-01542-8_2
SHAFI, S., ASSAD, A., 2023. Exploring the Relationship Between Learning Rate, Batch Size, and Epochs in Deep Learning: An Experimental Study. pp. 201–209. https://doi.org/10.1007/978-981-19-6525-8_16
SHEN, Y., HAN, T., YANG, Q., YANG, X., WANG, Y., LI, F., WEN, H., 2018. CS-CNN: Enabling Robust and Efficient Convolutional Neural Networks Inference for Internet-of-Things Applications. IEEE Access 6, 13439–13448. https://doi.org/10.1109/ACCESS.2018.2810264
SHIN, H.-C., ROTH, H.R., GAO, M., LU, L., XU, Z., NOGUES, I., YAO, J., MOLLURA, D., SUMMERS, R.M., 2016. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging 35, 1285–1298. https://doi.org/10.1109/TMI.2016.2528162
SHOUKAT, S., & A.S., 2021. Fraud Detection System Using Facial Recognition Based On Google Teachable Machine for Banking Applications. Journal of Innovative Computing and Emerging Technologies 2. https://doi.org/10.56536/jicet.v2i2.30
SINGH, P., RAJ, P., NAMBOODIRI, V.P., 2020. EDS Pooling Layer. Image Vis Comput 98, 103923. https://doi.org/10.1016/j.imavis.2020.103923
SPAGNOLO, F., PERRI, S., CORSONELLO, P., 2022. Aggressive Approximation of the SoftMax Function for Power-Efficient Hardware Implementations. IEEE Transactions on Circuits and Systems II: Express Briefs 69, 1652–1656. https://doi.org/10.1109/TCSII.2021.3120495
TOIVONEN, T., JORMANAINEN, I., KAHILA, J., TEDRE, M., VALTONEN, T., VARTIANEN, H., 2020. Co-Designing Machine Learning Apps in K–12 With Primary School Children, in: 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). IEEE, pp. 308–310. https://doi.org/10.1109/ICALT49669.2020.00099
WANG, D., ZHENG, T.F., 2015. Transfer Learning for Speech and Language Processing, in: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, pp. 1225–1237. https://doi.org/10.1109/APSIPA.2015.7415532
WANG, S.-H., TANG, C., SUN, J., YANG, J., HUANG, C., PHILLIPS, P., ZHANG, Y.-D., 2018. Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00818
WEN, L., GAO, L., LI, X., ZENG, B., 2021. Convolutional Neural Network With Automatic Learning Rate Scheduler for Fault Classification. IEEE Trans Instrum Meas 70, 1–12. https://doi.org/10.1109/TIM.2020.3048792
WIKARSA, L., ANGDRESEY, A., SOMBOUWADIL, T., 2022. Detection of the Types of Consumable Saltwater Fish in the Coastal Area of Likupang Uses the Convolutional Neural Network Method. Jurnal Pekommas 7.
WILLIAMS, J., TADESSE, A., SAM, T., SUN, H., MONTANEZ, G.D., 2020. Limits of Transfer Learning. pp. 382–393. https://doi.org/10.1007/978-3-030-64580-9_32
WONG, J.J.N., FADZLY, N., 2022a. Development of species recognition models using Google teachable machine on shorebirds and waterbirds. Journal of Taibah University for Science 16, 1096–1111. https://doi.org/10.1080/16583655.2022.2143627
WONG, J.J.N., FADZLY, N., 2022b. Development of Species Recognition Models Using Google Teachable Machine on Shorebirds and Waterbirds. Journal of Taibah University for Science 16, 1096–1111. https://doi.org/10.1080/16583655.2022.2143627
YEPEZ, J., KO, S.-B., 2020. Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional Neural Networks. IEEE Trans Very Large Scale Integr VLSI Syst 28, 853–863. https://doi.org/10.1109/TVLSI.2019.2961602
ZAFAR, A., AAMIR, M., MOHD NAWI, N., ARSHAD, A., RIAZ, S., ALRUBAN, A., DUTTA, A.K., ALMOTAIRI, S., 2022. A Comparison of Pooling Methods for Convolutional Neural Networks. Applied Sciences 12, 8643. https://doi.org/10.3390/app12178643
ZHANG, X., CHEN, G., SARUTA, K., TERATA, Y., 2020. A Guideline for Object Detection Using Convolutional Neural Networks. pp. 157–164. https://doi.org/10.1007/978-981-15-0187-6_18
ZHUANG, F., QI, Z., DUANN, K., XI, D., ZHU, Y., ZHU, H., XIONG, H., HE, Q., 2021. A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE 109, 43–76. https://doi.org/10.1109/JPROC.2020.3004555
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).












