Analisis Sentimen Terhadap Kebijakan SubsidiPembelian Kendaraan Bertenaga Listrik Di Indonesia Menggunakan Pendekatan Inset Lexicon dan Metode Support Vector Machine

Penulis

  • Dian Pratiwi Universitas Trisakti, Jakarta Barat
  • Nurizka Khoerani Universitas Trisakti, Jakarta Barat
  • Syandra Sari Universitas Trisakti, Jakarta Barat

DOI:

https://doi.org/10.25126/jtiik.2025126

Kata Kunci:

analisis sentimen, InSet, Vader, SVM, subsidi kendaraan listrik

Abstrak

Analisis sentimen berbasis leksikon merupakan metode yang umum digunakan untuk mengidentifikasi opini masyarakat terhadap isu-isu publik melalui media sosial. Penelitian ini membandingkan performa dua pendekatan leksikal, yaitu InSet lexicon dan Vader lexicon, dalam klasifikasi sentimen terhadap opini masyarakat mengenai kebijakan subsidi kendaraan listrik di Indonesia. Proses pelabelan sentimen dilakukan secara otomatis menggunakan masing-masing leksikon, kemudian diklasifikasikan menggunakan algoritma Support Vector Machine (SVM) dengan dua pendekatan representasi fitur, yaitu TF-IDF dan Word2Vec. Hasil klasifikasi menunjukkan bahwa InSet lexicon menghasilkan distribusi sentimen negatif yang dominan dengan akurasi klasifikasi sebesar 71%, sedangkan Vader lexicon lebih banyak mengidentifikasi sentimen positif dengan akurasi sebesar 64%. Evaluasi performa dilakukan menggunakan metrik akurasi, precision, recall, dan F1-score. Selain itu, visualisasi wordcloud digunakan untuk mengidentifikasi kata-kata kunci yang paling sering muncul dalam opini masyarakat, seperti “pemerintah”, “BBM”, dan “subsidi”, yang secara leksikal bersifat netral namun dapat membentuk arah sentimen tergantung konteks kalimat. Penelitian ini menunjukkan bahwa pemilihan leksikon dan representasi fitur berpengaruh signifikan terhadap hasil klasifikasi, serta menegaskan pentingnya validasi pelabelan dan pengembangan leksikon berbasis domain dalam analisis sentimen kebijakan publik.

 

Abstract

 

Lexicon-based sentiment analysis is a commonly used method to identify public opinion on policy issues through social media. This study compares the performance of two lexical approaches, namely InSet lexicon and Vader lexicon, in classifying sentiment toward public responses to Indonesia’s electric vehicle subsidy policy. Sentiment labeling was performed automatically using each lexicon, followed by classification using the Support Vector Machine (SVM) algorithm with two feature representation techniques: TF-IDF and Word2Vec. The results show that InSet lexicon yielded a dominant distribution of negative sentiment with a classification accuracy of 71%, while Vader lexicon identified more positive sentiments with an accuracy of 64%. Performance evaluation was carried out using accuracy, precision, recall, and F1-score metrics. In addition, wordcloud visualization was used to identify the most frequently appearing keywords in public opinion, such as “pemerintah” (government), “BBM” (fuel), and “subsidi” (subsidy), which are lexically neutral but may carry sentiment depending on contextual use. This study highlights the significant impact of lexicon choice and feature representation on classification performance and emphasizes the importance of label validation and domain-specific lexicon development in sentiment analysis for public policy evaluation.

Downloads

Download data is not yet available.

Referensi

AINI, Q., FAUZI, R. R., & KHUDZAEVA, E., 2023. Economic Impact Due Covid-19 Pandemic: Sentiment Analysis on Twitter Using Naive Bayes Classifier and Support Vector Machine. www.joiv.org/index.php/joiv

ALI, M., SON, D.-H., KANG, S.-H., & NAM, S.-R., 2017. An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy. Energies, 10(11), 1830. https://doi.org/10.3390/en10111830

ASRI, Y., SULIYANTI, W. N., KUSWARDANI, D., & FAJRI, M., 2022. Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile. PETIR, 15(2), 264–275. https://doi.org/10.33322/petir.v15i2.1733

BOUREQUAT, W., & MOURAD, H., 2021. Sentiment Analysis Approach for Analyzing iPhone Release using Support Vector Machine. International Journal of Advances in Data and Information Systems, 2(1), 36–44. https://doi.org/10.25008/ijadis.v2i1.1216

DEOLIKA, A., KUSRINI, & TAUFIQ LUTHFI, E., 2019. Analisis Pembobotan Kata pada Klasifikasi Text Mining. Jurnal Teknologi Informasi, 3(2).

DETIKOTO (2023) Pengamat: Idealnya bus listrik dapat subsidi 40% dari pemerintah. [online] 9 Maret. Tersedia di: https://oto.detik.com/berita/d-6546541/pengamat-idealnya-bus-listrik-dapat-subsidi-40-dari-pemerintah [Diakses 12 Mei 2025].

FERNANDA, M., & FATHONI, N., 2024. Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Jurnal Informatika Dan Sains Teknologi, 1(3), 62–76. https://doi.org/10.62951/modem.v1i3.112

FIRDAUS, R., ASROR, I., & HERDIANI, A., 2021. Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation. Ind. Journal on Computing Vol. 6, Issue. 1, April 2021. Pp. 1-12. https://doi.org/10.34818/indojc.2021.6.1.408

KOMPAS.COM 2023 Subsidi mobil listrik mulai berlaku 1 April 2023. [online] 20 Maret. Tersedia di: https://money.kompas.com/read/2023/03/20/194000026/subsidi-mobil-listrik-mulai-berlaku-1-april-2023 [Diakses 9 September 2023].

KOTO, F., & RAHMANINGTYAS, G. Y., 2017. Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs. Proceedings of the 2017 International Conference on Asian Language Processing, IALP 2017, 2018-January, 391–394. https://doi.org/10.1109/IALP.2017.8300625

LIU, B., 2012. Sentiment Analysis and Opinion Mining. Springer International Publishing. https://doi.org/10.1007/978-3-031-02145-9

MUSFIROH, D., KHAIRA, U., EKO, P., UTOMO, P., & SURATNO, T., 2021. Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1, 24–33.

NURCAHYAWATI, V., & MUSTAFFA, Z., 2023. Vader Lexicon and Support Vector Machine Algorithm to Detect Customer Sentiment Orientation. Journal of Information Systems Engineering and Business Intelligence, 9(1), 108–118. https://doi.org/10.20473/jisebi.9.1.108-118

PRATAMA, Y., TRIANTORO MURDIANSYAH, D., & MUSLIM LHAKSMANA, K., 2023. Analisis Sentimen Kendaraan Listrik Pada Media Sosial Twitter Menggunakan Algoritma Logistic Regression dan Principal Component Analysis. Jurnal Media Informatika Budidarma. https://doi.org/10.30865/mib.v7i1.5575

PRAYUDYANTO, M. N., 2021. Model Buy the Services Angkutan Umum Massal Kota Metropolitan: Apakah Subsidi Masih Diperlukan? Jurnal Penelitian Transportasi Darat, 23(1), 55–71. https://doi.org/10.25104/jptd.v23i1.1734

QEIS, M. I., 2015. Aplikasi Wordcloud sebagai Alat Bantu Analisis Wacana. International Conference on Language, Culture, and Society (ICLCS-LIPI). https://www.researchgate.net/publication/316736417

SAPUTRA, P. Y., 2017. Implementasi Teknik Crawling untuk Pengumpulan Data dari Media Sosial Twitter (Vol. 8, Issue 2). www.quicksprout.com

SARICA, S., & LUO, J., 2021. Stopwords in technical language processing.

PLOS ONE, 16(8), e0254937. https://doi.org/10.1371/journal.pone.0254937

SEPTIANI, D., & ISABELA, I., 2022. Analisis Term Frequency Inverse Document Frequency (TF-IDF) dalam Temu Kembali Informasi pada Dokumen Teks. SINTESIA: Jurnal Sistem Dan Teknologi Informasi Indonesia.

SETYOBUDI, W., ALWI, A., & ASTUTI, I. P., 2018. Sentimen Analisis Twitter Terhadap Penyelenggaraan Gojek Traveloka Liga 1 Indonesia. KOMPUTEK, 2(1), 56. https://doi.org/10.24269/jkt.v2i1.68

SOEN, A. S., SUGIANTO, H., THEODORUS, R., & MAPUSARI, S. A., 2022. Subsidi di Indonesia. WACANA EKONOMI (Jurnal Ekonomi, Bisnis Dan Akuntansi), 21(1), 84–92. https://doi.org/10.22225/we.21.1.2022.84-92

WAHYUDI, D., SUSYANTO, T., & NUGROHO, D., 2017. Implementasi dan Analisis Algoritma Stemming Nazief & Adriani dan Porter pada Dokumen Berbahasa Indonesia. Jurnal Ilmiah SINUS, 15(2). https://doi.org/10.30646/sinus.v15i2.305.

Diterbitkan

17-12-2025

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Analisis Sentimen Terhadap Kebijakan SubsidiPembelian Kendaraan Bertenaga Listrik Di Indonesia Menggunakan Pendekatan Inset Lexicon dan Metode Support Vector Machine. (2025). Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(6), 1303-1314. https://doi.org/10.25126/jtiik.2025126