Sistem Pakar Fuzzy Modular untuk Identifikasi Dosis Obat Leukemia

Penulis

  • Linda Perdana Wanti Politeknik Negeri Cilacap, Kabupaten Cilacap
  • Nur Wachid Adi Prasetya Politeknik Negeri Cilacap, Kabupaten Cilacap
  • Zahrun Nafisa Politeknik Negeri Cilacap, Kabupaten Cilacap
  • Muhammad Ramadani Politeknik Negeri Cilacap, Kabupaten Cilacap
  • Rahmat Hidayat Politeknik Negeri Cilacap, Kabupaten Cilacap

DOI:

https://doi.org/10.25126/jtiik.2025129545

Kata Kunci:

Fuzzy Modular, Expert System, Leukemia, Diagnosis, Input Variables

Abstrak

Diagnosis dan pengambilan keputusan tentang penyakit dalam bidang medis menghadapi ketidakpastian yang dapat memengaruhi proses pengobatan. Keputusan ini dibuat berdasarkan pengetahuan pakar dan cara seorang pakar dalam mendefinisikan kondisi pasien, gejala yang dialami dan faktor-faktor lain yang memengaruhi. Hasil definisi setiap pakar mungkin saja terdapat perbedaan berdasarkan faktor-faktor tersebut. Fuzzy modular expert system adalah suatu sistem berbasis pengetahuan yang memanfaatkan logika fuzzy untuk menangani ketidakpastian dan modularitas dalam pengambilan keputusan. Dalam sistem dengan ketidakpastian tinggi dan kompleksitas tinggi, logika fuzzy merupakan metode yang cocok untuk pemodelan. Dalam penelitian ini, fuzzy modular expert system untuk pemodelan ketidakpastian dalam pemberian dosis obat untuk terapi penyakit leukemia.  Variabel output yang digunakan pada penelitian ini adalah tingkat toksisitas yang dihasilkan dari proses pemberian dosis obat yang dibagi menjadi lima kategori yaitu sangat rendah, rendah, sedang, tinggi dan sangat tinggi. Variabel output yang kedua adalah kategori stadium leukemia yang diderita oleh pasien yang dibagi menjadi empat kategori yaitu stadium 1, stadium 2, stadium 3 dan stadium 4. Penelitian ini menggunakan 128 data latih pasien dengan dua variabel output. Hasil yang diperoleh menunjukkan bahwa fuzzy modular expert system dalam mengindentifikasi dosis obat yang diberikan sebagai terapi obat leukemia dengan akurasi rata-rata sekitar 94,8% berdasarkan data yang telah diuji dan dibandingkan dengan informasi dari pakar.

 

Abstract

Diagnosis and decision-making about diseases in the medical field face uncertainties that can affect the treatment process. These decisions are based on expert knowledge and how an expert defines the patient's condition, symptoms experienced, and other influencing factors. The results of each expert's definition may differ based on these factors. A fuzzy modular expert system is a knowledge-based system that utilizes fuzzy logic to handle uncertainty and modularity in decision-making. In systems with high uncertainty and high complexity, fuzzy logic is a suitable method for modeling. In this study, a fuzzy modular expert system for modeling uncertainty in leukemia diagnosis. The output variables used in this study are the level of toxicity resulting from the drug dosing process which is divided into five categories, namely shallow, low, medium, high, and very high. The second output variable is the category of leukemia stage suffered by the patient which is divided into four categories, namely stage 1, stage 2, stage 3, and stage 4. This study used 128 patient training data with 2 output variable. The results indicate that the fuzzy modular expert system can diagnose leukemia with an average accuracy of around 94.8% based on data that has been tested and compared with expert diagnoses.

Downloads

Download data is not yet available.

Referensi

ABAEI, GOLNOUSH, ALI SELAMAT, AND JEHAD AL DALLAL. 2020. “A Fuzzy Logic Expert system to Predict Module Fault Proneness Using Unlabeled Data.” Journal of King Saud University - Computer and Information Sciences 32(6): 684–99. https://doi.org/10.1016/j.jksuci.2018.08.003.

AL-DMOUR, JUMANAH A., ASSIM SAGAHYROON, A. R. AL-ALI, AND SALAH ABUSNANA. 2019. “A Fuzzy Logic–Based Warning System for Patients Classification.” Health Informatics Journal 25(3): 1004–24.

AL-QINDY, Q FATIMATUZZAHRO FIRLI, AND ANEKE DEWI RAHAYU. 2022. “Stress-Related Growth Caregiver Penderita Kanker Leukemia Di Ykaki (Yayasan Kasih Anak Kanker Indonesia) Yogyakarta.” http://eprints.uty.ac.id/11018/1/ABSTRAK_5_5171111116_Fatimatuzzahroh Firli Al-Qindi.pdf.

ALHABASHNEH, OBADA. 2021. “Fuzzy-Based Adaptive Framework for Module Advising Expert system.” Annals of Emerging Technologies in Computing 5(1): 13–27.

ARANI, LEILA AKRAMIAN, FRAHNAZ SADOUGHI, AND MUSTAFA LANGARIZADEH. 2019. “An Expert system to Diagnose Pneumonia Using Fuzzy Logic.” Acta Informatica Medica 27(2): 103–7.

BAHRONI, ISA ET AL. 2022. “Implementation of Forward Chaining for Diagnosis of Dengue Hemorrhagic Fever.” Journal of Innovation Information Technology and Application (JINITA) 4(1): 32–42.

CAO, JIN ET AL. 2024. “Fuzzy Inference System with Interpretable Fuzzy Rules: Advancing Explainable Artificial Intelligence for Disease Diagnosis—A Comprehensive Review.” Information Sciences 662(January): 120212. https://doi.org/10.1016/j.ins.2024.120212.

DINARDO, COURTNEY D. ET AL. 2019. “Venetoclax Combined with Decitabine or Azacitidine in Treatment-Naive, Elderly Patients with Acute Myeloid Leukemia.” Blood 133(1): 7–17.

FAISAL, RAHAT HOSSAIN ET AL. 2023. “A Modular Fuzzy Expert system for Chemotherapy Drug Dose Scheduling.” Healthcare Analytics 3(January): 100139. https://doi.org/10.1016/j.health.2023.100139.

FRIESE C, YANG J, MENDELSOHN-VICTOR K AND MCCULLAGH M. 2019. “Ten-Day Decitabine with Venetoclax in Acute Myeloid Leukemia: A Single-Arm Phase 2 Trial.” Physiology & behavior 46(2): 248–56.

GLOBOCAN. 2020. “On Cancer Incidence in Indonesia.” Internation Agency for Research on Cancer. https://www.aws.iarc.who.int/news-events/latest-global-cancer-data-globocan-database-2020/.

GONIBALA, ALFIANA P. 2022. “Adverse Drug Reactions Pada Pasien Pediatri Kanker Leukemia Limfoblastik Akut Adverse Drug Reactions in Pediatrics with Acute Lymphoblastic Leukemia.” Jurnal Farmasi Tinctura 3(2): 56–64.

HADIKURNIAWATI, WIWIEN ET AL. 2023. “Triangular Fuzzy Numbers-Based MADM for Selecting Pregnant Mothers at Risk of Stunting.” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7(3): 579–85.

HEIß, ANDREAS, DIMITRIOS S. PARAFOROS, GALIBJON M. SHARIPOV, AND HANS W. GRIEPENTROG. 2021. “Modeling and Simulation of a Multi-Parametric Fuzzy Expert system for Variable Rate Nitrogen Application.” Computers and Electronics in Agriculture 182(January).

ISNANI, NAZHIPAH, DYAH ARYANI PERWITASARI, RIZKA ANDALUSIA, AND HARIDINI INTAN MAHDI. 2020. “Hubungan Karakteristik Pasien Dengan Toksisitas Hepatologi Akibat Penggunaan 6-Merkaptopurin Dalam Fase Pemeliharaan Pada Pasien Pediatri Kanker Leukimia Limfoblastik Akut Di Rs Kanker Dharmais Jakarta.” Jurnal Insan Farmasi Indonesia 3(2): 361–68.

L, AROKIA JESU PRABHU ET AL. 2020. “Medical Information Retrieval Systems for E-Health Care Records Using Fuzzy Based Machine Learning Model.” Microprocessors and Microsystems: 103344. https://doi.org/10.1016/j.micpro.2020.103344.

LYU, HAI MIN, WAN HUAN ZHOU, SHUI LONG SHEN, AND AN NAN ZHOU. 2020. “Inundation Risk Assessment of Metro System Using AHP and TFN-AHP in Shenzhen.” Sustainable Cities and Society 56: 102103. https://doi.org/10.1016/j.scs.2020.102103.

MATHEW, MANOJ, RIPON K. CHAKRABORTTY, AND MICHAEL J. RYAN. 2020. “A Novel Approach Integrating AHP and TOPSIS under Spherical Fuzzy Sets for Advanced Manufacturing System Selection.” Engineering Applications of Artificial Intelligence 96(October): 103988. https://doi.org/10.1016/j.engappai.2020.103988.

MOHAMMAD, SEYYED, MOHAMMADREZA MEGHDADI, SAEED KHAYAT KAKHKI, AND REZA KHADEMI. 2024. “Anti-Leukemia Effects of Ginsenoside Monomer : A Narrative Review of Pharmacodynamics Study.” Current Therapeutic Research: 100739. https://doi.org/10.1016/j.curtheres.2024.100739.

MOJRIAN, SANAZ ET AL. 2020. “Hybrid Machine Learning Model of Extreme Learning Machine Radial Basis Function for Breast Cancer Detection and Diagnosis; A Multilayer Fuzzy Expert system.” Proceedings - 2020 RIVF International Conference on Computing and Communication Technologies, RIVF 2020.

MUJAWAR, I. K., B. T. JADHAV, V. B. WAGHMARE, AND R. Y. PATIL. 2019. “Online Approach for Diabetes Diagnosis and Classification with Expert system Modules Using Fuzzy Logic.” 2019 IEEE Pune Section International Conference, PuneCon 2019: 1–6.

MUTTAQIN, FAUZAN ZEIN. 2019. “Studi Molecular Docking, Molecular Dynamic, Dan Prediksi Toksisitas Senyawa Turunan Alkaloid Naftiridin Sebagai Inhibitor Protein Kasein Kinase 2-Α Pada Kanker Leukemia.” Pharmacoscript 2(1): 49–64.

NOURIAN, R., S. MEYSAM MOUSAVI, AND S. RAISSI. 2019. “A Fuzzy Expert system for Mitigation of Risks and Effective Control of Gas Pressure Reduction Stations with a Real Application.” Journal of Loss Prevention in the Process Industries 59: 77–90. https://doi.org/10.1016/j.jlp.2019.03.003.

NUHU, BELLO KONTAGORA ET AL. 2021. “Distributed Network-Based Structural Health Monitoring Expert system.” Building Research and Information 49(1): 144–59.

PHAN, HUYEN TRANG, NGOC THANH NGUYEN, VAN CUONG TRAN, AND DOSAM HWANG. 2021. “An Approach for a Decision-Making Support System Based on Measuring the User Satisfaction Level on Twitter.” Information Sciences 561: 243–73. https://doi.org/10.1016/j.ins.2021.01.008.

PICCOLOMO, ANTONIO ET AL. 2020. “Immunomodulatory Drugs in Acute Myeloid Leukemia Treatment.” Cancers 12(9): 1–14.

PRASETYA, NUR WACHID ADI, LINDA PERDANA WANTI, LAURA SARI, AND LINA PUSPITASARI. 2022. “Sistem Pakar Deteksi Dini Penyakit Preeklamsia Pada Ibu Hamil Menggunakan Metode Certainty Factor.” Infotekmesin 13(1): 168–77.

RAHIMI DAMIRCHI-DARASI, S., M. H. FAZEL ZARANDI, I. B. TURKSEN, AND M. IZADI. 2019. “Type-2 Fuzzy Rule-Based Expert system for Diagnosis of Spinal Cord Disorders.” Scientia Iranica 26(1E): 455–71.

SAIBENE, AURORA, MICHELA ASSALE, AND MARTA GILTRI. 2021. “Expert systems: Definitions, Advantages and Issues in Medical Field Applications.” Expert systems with Applications 177(November 2020): 114900. https://doi.org/10.1016/j.eswa.2021.114900.

SINGLA, JIMMY ET AL. 2020. “A Novel Fuzzy Logic-Based Medical Expert system for Diagnosis of Chronic Kidney Disease.” Mobile Information Systems 2020.

STATISTIK, BADAN PUSAT. 2023. Profil Statistik Kesehatan 2023.

https://www.bps.go.id/id/publication/2023/12/20/feffe5519c812d560bb131ca/profil-statistik-kesehatan-2023.html.

STEIN, EYTAN M. ET AL. 2021. “Ivosidenib or Enasidenib Combined with Intensive Chemotherapy in Patients with Newly Diagnosed AML: A Phase 1 Study.” Blood 137(13): 1792–1803.

SUSANTO, SUSANTO, AND ERMIN KATRIN WINARNO. 2020. “Aktivitas Sitotoksik Ekstrak Etil Asetat Daun Jati Belanda (Guazuma Ulmifolia Lamk.) Terhadap Sel Kanker Leukemia L1210.” Chimica et Natura Acta 8(1): 1.

WANTI, LINDA PERDANA, IFDA NURUL AZROHA, AND MUHAMMAD NUR FAIZ. 2019. “Implementasi User Centered Design Pada Sistem Pakar Diagnosis Gangguan Perkembangan Motorik Kasar Pada Anak Usia Dini.” Media Aplikom 11(1): 1–10.

WANTI, LINDA PERDANA, KURNIAWAN YOGI LAKSONO, AND RIYADI PURWANTO. 2019. “Implementasi Metode User Centered Design Pada Sistem Pendukung Keputusan Peramalan Penjualan Ikan Hias.” Jurnal ICT : Information Communication & Technology 18(1): 26–33.

WANTI, LINDA PERDANA, AND LINA PUSPITASARI. 2022. “Optimization of the Fuzzy Logic Method for Autism Spectrum Disorder Diagnosis.” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6(1): 16–24.

WANTI, LINDA PERDANA, AND SYAHRUR ROMADLON. 2020. “Implementasi Forward Chaining Method Pada Sistem Pakar Untuk Deteksi Dini Penyakit Ikan.” Infotekmesin 11(02): 74–79.

WANTI, LINDA PERDANA, OMAN SOMANTRI, AND TITIN KARYATI. 2023. “Utilization of AR Technology for The Development of Speech Therapy Applications by Optimizing Marked-Based Tracking Method.” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 8(1).

WANTI, LINDA PERDANA, OMAN SOMANTRI, NUR WACHID ADI PRASETYA, AND LINA PUSPITASARI. 2024. “Fuzzy Expert system Design for Detecting Stunting.” Indonesian Journal of Electrical Engineering and Computer Science 34(1): 556–64.

WANTI, LINDA, NUR PRASETYA, LAURA SARI, AND LINA PUSPITASARI. 2023. “Optimization of Certainty Factor Method to Detect Preeclampsia in Women Pregnant.” In Icast 2021, , 147–55.

WEI, ANDREW H. ET AL. 2020. “Venetoclax plus LDAC for Newly Diagnosed AML Ineligible for Intensive Chemotherapy: A Phase 3 Randomized Placebo-Controlled Trial.” Blood 135(24): 2137–45.

YUAN, JIE ET AL. 2021. “Process Abnormity Identification by Fuzzy Logic Rules and Expert Estimated Thresholds Derived Certainty Factor.” Chemometrics and Intelligent Laboratory Systems 209(August 2020): 104232. https://doi.org/10.1016/j.chemolab.2020.104232.

Diterbitkan

24-04-2025

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Sistem Pakar Fuzzy Modular untuk Identifikasi Dosis Obat Leukemia. (2025). Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(2), 437-446. https://doi.org/10.25126/jtiik.2025129545