Prediksi Single-Step dan Multi-Step Data Cuaca Menggunakan Model Long Short-Term Memory dan Sarima

Penulis

  • Humasak Tommy Argo Simanjuntak Institut Teknologi Del, Kabupaten Toba
  • Amelia Lumbanraja Institut Teknologi Del, Kabupaten Toba
  • Gabriel Samosir Institut Teknologi Del, Kabupaten Toba
  • Regita Institut Teknologi Del, Kabupaten Toba

DOI:

https://doi.org/10.25126/jtiik.2025129444

Kata Kunci:

time series prediction, weather prediction, LSTM, SARIMA

Abstrak

Prediksi deret waktu pada parameter data cuaca adalah proses memprediksi nilai masa depan berdasarkan pola data historis cuaca. Penelitian ini mengatasi kelemahan penelitian sebelumnya seperti data yang terbatas, jangka waktu prediksi, keterbatasan parameter yang digunakan dalam penelitian serta tidak menggunakan parameter eksternal yang tentunya dapat membantu proses prediksi model menjadi lebih akurat. Penelitian ini menggunakan metode Long Short-Term Memory (LSTM) dan Seasonal AutoRegressive Integrated Moving Average (SARIMA) untuk memprediksi parameter cuaca, seperti tekanan udara, suhu, dan kelembaban relatif, dengan pendekatan single-step dan multi-step ahead. Data bersumber dari BMKG Stasiun Meteorologi Pinangsori, Sibolga, selama 8 tahun, dengan granularity per jam dan per hari. Hasil eksperimen menunjukkan bahwa LSTM dan SARIMA, memiliki keunggulan dalam konteks tertentu. Untuk pendekatan single-step, model SARIMA lebih baik 49% dari model LSTM untuk prediksi dengan granularity data per jam. Namun, untuk granularity data per hari, performansi LSTM lebih baik 27% dari model SARIMA. Kemudian untuk pendekatan multi-step, SARIMA memberikan performansi yang lebih baik 30% daripada model LSTM untuk data per jam (< =24). Sedangkan untuk granularity data harian, model LSTM lebih baik 30% pada step 30 hari dan lebih baik 27% pada step 60 hari. Dan untuk data ekstrem, LSTM lebih baik 47% daripada SARIMA.

 

Abstract

Time series prediction of weather data parameters involves forecasting future values based on historical weather patterns. This study addresses the limitations of previous research, such as constrained datasets, short prediction periods, restricted parameters, and the neglect of external factors that could enhance model accuracy. Utilizing Long Short-Term Memory (LSTM) networks and Seasonal AutoRegressive Integrated Moving Average (SARIMA) methods, the research focuses on predicting weather parameters like air pressure, temperature, and relative humidity using both single-step and multi-step approaches. The data is sourced from the BMKG Pinangsori Meteorological Station in Sibolga, covering an 8-year period with both hourly and daily granularity. The experimental findings reveal that LSTM and SARIMA each have their advantages depending on the context. In the single-step approach, the SARIMA model outperforms the LSTM model by 49% for predictions based on hourly data. Conversely, for daily data granularity, the LSTM model surpasses SARIMA by 27%. In the multi-step analysis, SARIMA demonstrates a 30% improvement over LSTM for hourly predictions (up to 24 hours). However, for daily granularity, the LSTM model excels, showing a 30% advantage at the 30-day prediction step and a 27% advantage at the 60-day step. Additionally, LSTM significantly outperforms SARIMA by 47% when dealing with extreme data.

Downloads

Download data is not yet available.

Referensi

BAHRPEYMA, F., 2020. Multi-step ahead time series prediction. s.l.:Dublin City University.

CHANDRA, R., GOYAL, S. & GUPTA, R., 2021. Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction. IEEE Access, 31 May, Volume 9, pp. 83105-83123.

CHENG, H., TAN, P.-N., GAO, J. & SCRIPPS , J., 2006. Multistep-Ahead Time Series Prediction. Dalam: Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science. Berlin: Springer, p. 765–774.

CHEN, G., LIU, S. & JIANG , F., 2022. Daily Weather Forecasting Based on Deep Learning Model: A Case Study of Shenzhen City, China. Atmosphere, 01 Agustus, Volume 13, p. 1208.

CHEN, P. et al., 2018. Time Series Forecasting of Temperatures using SARIMA: An Example from Nanjing. IOP Conf. Series: Materials Science and Engineering, 07 Agustus, Volume 394, p. 052024.

GEETHA, A. & NASIRA, G., 2017. Time-series modelling and forecasting: modelling of rainfall prediction using ARIMA model. International Journal of Society Systems Science, 11 Januari.8(4).

HAN, Z. et al., 2021. A Review of Deep Learning Models for Time Series Prediction. IEEE Sensors Journal, 15 March, 21(6), pp. 7833 - 7848.

HEWAMALAGE, H., BERGMEIR, C. & BANDARA, K., 2021. Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions. International Journal of Forecasting, 1 Januari, 37(1), pp. 388-427.

HOCHREITER, S. & SCHMIDHUBER, J., 1997. Long Short Term Memory. Neural Computation, 9(8), pp. 1735-1780.

KOUTROUMBAS, K. & BELEHAKI, A., 2005. One-step ahead prediction of f oF2 using time series forecasting techniques. Annales Geophysicae, 22 November.

MURAT, M., MALINOWSKA, I., GOS, M. & KRZYSZCZAK, J., 2018. Forecasting daily meteorological time series using ARIMA and regression models. International agrophysics, 32(2).

PARASYRIS, A. et al., 2022. Predicting Meteorological Variables on Local Level with SARIMA, LSTM and Hybrid Techniques. Atmosphere, 28 May, 13(6), p. 878.

RAY, S., DAS, S. S., MISHRA, P. & AL KHATIB, A. M. G., 2021. Time Series SARIMA Modelling and Forecasting of Monthly Rainfall and Temperature in the South Asian Countries. Earth Systems and Environment, 17 March, Volume 5, p. 531–546.

SULEMAN , M. A. R. & SHRIDEVI, S., 2022. Short-Term Weather Forecasting Using Spatial Feature Attention Based LSTM Model. IEEE Access, 04 08, Volume 10, pp. 82456-82468.

SULEMAN, M. A. R. & SHRIDEVI, S., 2022. Short-Term Weather Forecasting Using Spatial Feature Attention Based LSTM Model. IEEE Access, August, Volume 10, pp. 82456-82468.

SURADHANIWAR, S., KAR, S., DURBHA, S. S. & JAGARLAPUDI, A., 2021. Time Series Forecasting of Univariate Agrometeorological Data: A Comparative Performance Evaluation via One-Step and Multi-Step Ahead Forecasting Strategies. Sensors, 01 April, Volume 21, p. 2430.

TEIXEIRA, R., CERVEIRA, A., PIRES, E. J. S. & BAPTISTA, J., 2024. Enhancing Weather Forecasting Integrating LSTM and GA. Applied Sciences, 1 July, 14(13), p. 5769.

TORRES, J. F. et al., 2021. Deep Learning for Time Series Forecasting: A Survey. Big Data, 5 February.9(1).

ZHANG, W. Y., XIE, J. F., WAN, G. C. & TONG, M. S., 2022. Single-step and Multi-step Time Series Prediction for Urban Temperature Based on LSTM Model of TensorFlow. hangzhou, IEEE.

Diterbitkan

24-04-2025

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Prediksi Single-Step dan Multi-Step Data Cuaca Menggunakan Model Long Short-Term Memory dan Sarima. (2025). Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(2), 399-410. https://doi.org/10.25126/jtiik.2025129444