Kombinasi Analisis Bibliometrik dengan Latent Dirichlet Allocation sebagai Pemodelan Topik Cashless Society

Penulis

  • Hanifa Sepriadi Universitas Brawijaya, Malang
  • Cindy Rudiat Sekarsari Universitas Brawijaya, Malang
  • Atiek Iriany Universitas Brawijaya, Malang
  • Solimun Universitas Brawijaya, Malang
  • Adji Achmad Rinaldo Fernandes Universitas Brawijaya, Malang

DOI:

https://doi.org/10.25126/jtiik.2012129244

Kata Kunci:

Big data, Cashless Society, Bibliometric, latent Dirichlet Allocation

Abstrak

Era digitalisasi dan komputasi telah dimulai, ditandai dengan munculnya teknologi digital yang merasuk ke berbagai aspek kehidupan, sementara data juga terus berkembang menjadi big data.  Setelah era covid 19, metode pembayaran non-tunai berkembang sangat pesat, sehingga banyak penelitian mengenai cashless society. Tujuan dari penelitian ini adalah memodelkan topik-topik yang berkaitan dengan cashless society untuk mendapatkan variabel dan indikator yang terkait dengan menggunakan analisis bibliometrik dan latent dirichlet allocation. Data penelitian ini berasal dari artikel publikasi ilmiah dan hasil web scrapping di twitter yang bertemakan cashless society. Hasil penelitian menunjukkan bahwa terdapat 5 variabel dan 21 indikator yang berhubungan dengan cashless society.

 

Abstract

The era of digitalization and computing has begun, marked by the emergence of digital technology which permeates various aspects of life, while data also continues to develop into big data.  After the covid 19 era, non-cash payment methods developed very rapidly, so there were many studies on the cashless society. The purpose of this research is to model topics related to the cashless society to obtain related variables and indicators using bibliometric analysis and latent dirichlet allocation. This research data comes from scientific publication articles and web scrapping results on twitter with the theme of cashless society. The results showed that there are 5 variables and 21 indicators related to cashless society.

Downloads

Download data is not yet available.

Referensi

BLEI, D. M., NG, A. Y., & JORDAN, M. I. 2003. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022.

CHAPAGAIN, A. 2019. Hands-On Web Scraping with Python: Perform advanced scraping operations using various Python libraries and tools such as Selenium, Regex, and others. Packt Publishing Ltd.

EZAMA-NICOLÁS, R 2018. A Bibliometric Method for Assessing Technological Maturity: The Case of Additive Manufacturing. Scientometrics,117(3), 1425–1452.

FEINERER, I., HORNIK, K., & MEYER, D. 2008. Text Mining Infrastructure in R. Journal of Statistical Software, 25(5). https://doi.org/10.18637/jss.v025.i05

GARBHAPU, V. K., & BODAPATI, P. 2020. A comparative analysis of Latent Semantic analysis and Latent Dirichlet allocation topic modeling methods using Bible data. Indian Journal of Science and Technology, 13(44), 4474-4482.

HAN, J., TONG, H., & TONG, H. 2022. Data mining: concepts and techniques. Cambridge: Morgan kaufmann.

KALEPALLI, Y., TASNEEM, S., TEJA, P. D. P., & MANNE, S. 2020. Effective comparison of LDA with LSA for topic modelling. In 2020 4th International conference on intelligent computing and control systems (ICICCS) (pp. 1245-1250). IEEE.

RÖDER, M., BOTH, A., & HINNEBURG, A. 2015. Exploring the Space of Topic Coherence Measures. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, 399–408. https://doi.org/10.1145/2684822.2685324

ROSEN-ZVI, M., GRIFFITHS, T., STEYVERS, M., & SMYTH, P. 2012. The Author-Topic Model for Authors and Documents.

VAN KLAVEREN, C., & DE WOLF, I. 2019. Systematic Reviews in Education Research: In Contemporary Economic Perspectives in Education. https://doi.org/10.2307//j.ctt14jxsqg.4

YANG, L., SUN, Y., & LIU, Z. 2013. A Bibliometric Investigation of Research Trends in Computational Simulation for Engineering. Scientometrics, 95(2), 529-546. doi:10.1007/s11192-012-0872-z

YULIANTI, N., ULPAWATI, U., & SUSANTI, S. 2022. Analisis Bibliometrik Determinan Kejadian Stunting Pada Balita. Jurnal Riset Rumpun Ilmu Kesehatan, 1(2), 120-129.

Diterbitkan

24-04-2025

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Kombinasi Analisis Bibliometrik dengan Latent Dirichlet Allocation sebagai Pemodelan Topik Cashless Society. (2025). Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(2), 331-338. https://doi.org/10.25126/jtiik.2012129244