Peningkatan Akurasi Sistem Pemantauan Suhu Dan Kelembapan Pada Laboratorium Pengujian Benih Tanaman Menggunakan Inversi Regresi Linier

Penulis

  • Mochamad Susantok Politeknik Caltex Riau, Pekanbaru
  • Agus Urip Ari Wibowo Politeknik Caltex Riau, Pekanbaru
  • Memen Akbar Politeknik Caltex Riau, Pekanbaru
  • Rahul Politeknik Caltex Riau, Pekanbaru

DOI:

https://doi.org/10.25126/jtiik.20251219083

Kata Kunci:

Laboratiorium uji benih, kualitas udara, IoT, inversi regresi linier

Abstrak

Laboratorium uji benih memerlukan informasi suhu dan kelembapan ruang untuk menjaga kualitas proses pengujian benih. Saat ini, laboran mencatat parameter lingkungan dua kali sehari pada pukul 9.00 dan 14.00 dengan menggunakan alat ukur terkalibrasi. Namun, metode ini tidak mencakup data di luar jam kerja atau pada hari libur, sehingga tidak memenuhi persyaratan pencatatan kontinu yang diwajibkan oleh Komite Akreditasi Nasional (KAN). Penelitian ini bertujuan untuk mengembangkan sistem pemantauan kualitas udara berbasis IoT yang mampu mencatat suhu dan kelembapan secara kontinu tanpa keterbatasan waktu serta memastikan akurasi data dengan mekanisme kalibrasi menggunakan metode inversi regresi linier. Sistem ini menampilkan data langsung pada layar OLED, menyimpan data di media microSD, dan mengunggahnya ke lembar kerja daring untuk pemantauan dan analisis lebih lanjut. Hasil pengujian menunjukkan bahwa sistem memiliki tingkat akurasi pengukuran sebesar 98% untuk suhu dan 97% untuk kelembapan setelah menggunakan inversi regresi linier dengan menggunakan 15 data. Dengan demikian, sistem ini mampu menggantikan metode pencatatan manual yang terbatas dan memenuhi persyaratan pencatatan kontinu dari KAN.

 

Abstract

Seed testing laboratories require temperature and humidity information to maintain the quality of seed testing processes. Currently, laboratory staff record environmental parameters twice daily at 9:00 AM and 2:00 PM using calibrated measuring instruments. However, this method does not cover data outside working hours or during holidays, thus failing to meet the continuous recording requirements mandated by the National Accreditation Committee (KAN). This study aims to develop an IoT-based air quality monitoring system capable of recording temperature and humidity continuously without time constraints while ensuring data accuracy through a calibration mechanism using the linear regression inversion method. The system displays real-time data on an OLED screen, stores data on a microSD card, and uploads it to an online spreadsheet for further monitoring and analysis. The test results show that the system achieves a measurement accuracy of 98% for temperature and 97% for humidity after applying the linear regression inversion method by using 15 data. Thus, the system can replace the limited manual recording method and meet the continuous recording requirements set by the KAN.

Downloads

Download data is not yet available.

Referensi

ADMIN, 2022. Seksi Kultivar Sertifikasi dan Pengawasan Benih Tanaman Pangan,. [online] Pangannews.id. Available at: <http://dinastph.sumutprov.go.id/tph/detail.php?id=642> [Accessed 17 July 2024].

CHOOSUMRONG, S., HATAITARA, R., PANUMONWATEE, G., RAGHAVAN, V., NUALSRI, C., PHASINAM, T. AND PHASINAM, K., 2023. Development of IoT based Smart Monitor and Control System using MQTT Protocol and Node-RED for Parabolic Greenhouse Solar Drying. International Journal of Information Technology, 15(4), pp.2089–2098. https://doi.org/10.1007/s41870-023-01237-3.

FACHRURI, M., MUHIDONG, J. AND SAPSAL, M.T., 2019. Analisis Pengaruh Suhu dan Kelembaban Ruang terhadap Kadar Air Benih Padi di Gudang Penyimpanan PT. Sang Hyang Seri. Jurnal Agritechno, pp.131–137. https://doi.org/10.20956/at.v0i0.221.

FAISAL, F., ISMADI, I. AND RAFLI, M., 2022. Upaya Peningkatan Performa Perkecambahan Benih dalam Pengujian di Laboratorium melalui Perancangan Alat Pengecambah Benih yang Ideal. Jurnal Agrium, 19(1), p.9.

https://doi.org/10.29103/agrium.v19i1.6762.

GUNAWAN, R., ANDHIKA, T., SANDI, AND HIBATULLOH, F., 2019. Sistem Monitoring Kelembapan Tanah, Suhu, pH, dan Penyiraman Otomatis pada Tanaman Tomat berbasis Internet of Things. Telekontran, 7(1), pp.66-78. https://doi.org/10.34010/telekontran.v7i1.1640.

HIRAWAN, D. AND HERMANDA, D., 2019. Pembangunan Sistem Monitoring Pengelolaan Benih Tanaman Hutan berbasis Internet of Things dan Smart Energy. Komputika: Jurnal Sistem Komputer, 8(2), pp.119-128. https://doi.org/10.34010/komputika.v8i2.2279.

HOLOVATYY, A., 2021. Development of IoT Weather Monitoring System Based on Arduino and ESP8266 Wi-Fi Module. IOP Conference Series: Materials Science and Engineering, 1016(1), p.012014. https://doi.org/10.1088/1757-899X/1016/1/012014.

JEROME O, N., 2019. Encyclopedia of Environmental Health. 2nd ed. Elsevier.

KAZI, Z., FILIP, S. AND KAZI, L., 2023. Predicting PM2.5, PM10, SO2, NO2, NO and CO Air Pollutant Values with Linear Regression in R Language. Applied Sciences, 13(6), p.3617. https://doi.org/10.3390/app13063617.

KUMAR BHOI, S., KUMAR PANDA, S., KUMAR JENA, K., SAGAR SAHOO, K., Z. JHANJHI, N., MASUD, M. AND ALJAHDALI, S., 2022. IoT-EMS: An Internet of Things based Environment Monitoring System in Volunteer Computing Environment. Intelligent Automation & Soft Computing, 32(3), pp.1493–1507. https://doi.org/10.32604/iasc.2022.022833.

KUMKHET, B., RAKLUEA, P., SANGMAHAMAD, P., PIRAJNANCHAI, V., PECHRKOOL, T. AND SUTHAM, T., 2022. IoT-based Automatic Brightness and Soil Moisture Control System for Gerbera Smart Greenhouse. In: 2022 International Electrical Engineering Congress (iEECON). IEEE. pp.1–4.

https://doi.org/10.1109/iEECON53204.2022.9741578.

KUSUMA, V.A., PUTRA, M.I.A. AND SUPRAPTO, S.S., 2022. Sistem Monitoring Stok dan Penjualan Minuman pada Vending Machine berbasis Internet of Things (IoT) menggunakan Google Sheets dan Kodular. Jurnal Sistim Informasi dan Teknologi, pp.94–98. https://doi.org/10.37034/jsisfotek.v4i3.136.

DE NARDIS, L., MOHAMMADPOUR, A., CASO, G., ALI, U. AND DI BENEDETTO, M.-G., 2022. Internet of Things Platforms for Academic Research and Development: A Critical Review. Applied Sciences, 12(4), p.2172. https://doi.org/10.3390/app12042172.

PERDANA, D., RAMADHANI, K. AND ALINURSAFA, I., 2022. Analysis of the MQTT Protocol on Hydroponic System Based on Internet of Things and Antares Platform. Webology, 9(2), pp.5562–5576.

PRASETYO, T., WULANJARI, M.E. AND SETIANI, C., 2021. Analisis Pengembangan Kelembagaan dan Sistem Produksi Benih Padi di Jawa Tengah. Jurnal Riset Agribisnis dan Peternakan, [online] 6(2), pp.69–84. https://doi.org/10.37729/jrap.v6i2.1810.

PRAYITNO, P., MUKHLIS, S. AND HARIYANTO, B., 2023. Rancang Bangun Alat Perkecambahan Benih (Germinator) Portabel. Jurnal Pengembangan Potensi Laboratorium, 2(1), pp.44–50. https://doi.org/10.25047/plp.v2i1.3682.

PURBAKAWACA, R. AND FAUZAN, S.A., 2022. Rancang Bangun Sistem Pemantauan Kualitas Udara dalam Ruangan berbiaya Rendah berbasis IoT. Jurnal Talenta Sipil, 5(1), p.118. https://doi.org/10.33087/talentasipil.v5i1.104.

PURWANTI, S., 2004. Study of Storage Temperature on the Quality of Black and Yellow Soybean Seed. Ilmu Pertanian, 11(1), pp.22–31.

RAY, J. AND BORDOLUI, K.S., 2022. Seed Quality Deterioration of Tomato during Storage: Effect of Storing Containers and Condition. Biological Forum, 14(2), pp.327–334.

RUMPA, L.D., AMBABUNGA, Y.A. AND PINENG, M., 2023. Optimization of ACS712 Sensor Current Measurement in Solar Power System through Regression Modeling. Journal of Applied Informatics and Computing, 7(2), pp.198–201. https://doi.org/10.30871/jaic.v7i2.6511.

SÁ, J.P., ALVIM-FERRAZ, M.C.M., MARTINS, F.G. AND SOUSA, S.I.V., 2022. Application of the Low-Cost Sensing Technology for Indoor Air Quality Monitoring: a Review. Environmental Technology & Innovation, 28, p.102551. https://doi.org/10.1016/j.eti.2022.102551.

SONG, M., BURA, E., PARZER, R. AND PFEIFFER, R.M., 2023. Structured Time‐Dependent Inverse Regression (STIR). Statistics in Medicine, 42(9), pp.1289–1307. https://doi.org/10.1002/sim.9670.

SYAHRUL YASIL LIMPO, 2022. Kementan Tekankan Pentingnya Pengujian untuk Hasilkan Benih Unggul Bermutu. [online] Pangannews.id. Available at: <https://pangannews.id/berita/1643029509/kementan-tekankan-pentingnya-pengujian-untuk-hasilkan-benih-unggul-bermutu> [Accessed 17 July 2024].

WAHYU SITI ULAM SARI, GIGIH PRIYANDOKO AND DEDI USMAN EFFENDY, 2022. Rancang Bangun Sistem Monitoring Kualitas Udara Pada Ruang Isolasi Covid-19 berbasis Android menggunakan Sensor Sharp Gp2y1010au0f. JASEE Journal of Application and Science on Electrical Engineering, 3(02), pp.1–11. https://doi.org/10.31328/jasee.v3i02.204.

WAKCHOURE, S.S., SHEWALE, P.S., RAJPUT, J.G., GAUPAL, S.A., THAKRE, M.P. AND RADE, M.R., 2022. Multiple Approach of RFID-based Attendance System using IoT. pp.487–499. https://doi.org/10.1007/978-981-16-5301-8_36.

WANG, T. AND ZHU, L., 2021. Model-based Inverse Regression and Its Applications. In: Festschrift in Honor of R. Dennis Cook. Cham: Springer International Publishing. pp.109–125. https://doi.org/10.1007/978-3-030-69009-0_6.

ZHENG, L., LIN, R., WANG, X. AND CHEN, W., 2021. The Development and Application of Machine Learning in Atmospheric Environment Studies. Remote Sensing, 13(23), p.4839. https://doi.org/10.3390/rs13234839.

Diterbitkan

27-02-2025

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Peningkatan Akurasi Sistem Pemantauan Suhu Dan Kelembapan Pada Laboratorium Pengujian Benih Tanaman Menggunakan Inversi Regresi Linier. (2025). Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(1), 153-164. https://doi.org/10.25126/jtiik.20251219083