Persepsi Kesesuaian dan Kepuasan Penggunaan Media Sosial pada Perkuliahan: Pengujian Model



Kata Kunci:

model kepuasan, kesesuaian, media sosial, adopsi teknologi


Penerimaan teknologi merupakan faktor penting, untuk keberlanjutan penggunaan sebuah teknologi. Model-model pengukuran telah banyak dikembangkan, namun belum mempertimbangkan kesesuaian dan kepuasan dalam penggunaan teknologi berkelanjutan. Pada penelitian yang sebelumnya penulis telah mengembangkan model kepuasan dan kesesuaian (Task-fit and Satisfaction Model) untuk mengidentifikasi persepsi dosen terhadap kesesuaian dan kepuasan penggunaan facebook sebagai sarana komunikasi dan informasi pada perkuliahan, namun belum diuji. Artikel ini menyajikan proses pengujian terhadap model tersebut. Responden penelitian ini adalah dosen di indonesia khususnya yang menggunakan facebook. Data penelitian dikumpulkan dengan menggunakan metode survey online. Metode Structural Equation Modeling (SEM) dan Partial Least Square (PLS) digunakan untuk analisis data. Hasil pengujian hipotesis memperlihatkan perceived task-fit, utilization dan satisfaction secara signifikan mempengaruhi continuance intention. Pengujian juga memperlihatkan bahwa Perceived task fit , confirmation, dan Service quality secara signifikan mempengaruhi satisfaction. Terdapat korelasi positif perceived task-fit terhadap utilization, dan service quality terhadap confirmation. Sedangkan pengujian coefficient of determination (R2), memperlihatkan continuance intention memperoleh nilai R2= 0.723, hal ini menunjukkan bahwa perentasi besarnya kemampuan model dalam memprediksi persepsi kesesuaian dan kepuasan dosen terhadap penggunaan facebook dalam perkuliahan sebesar 72.3%.



Acceptance of technology is an important factor, for the continued use of a technology. Measurement models have been developed, but not many consider perceived of fitness and satisfaction in receiving technology. In the previous research the authors has developed a Task-fit and Satisfaction Model to identify lecturers' perceptions of the suitability and satisfaction of facebook usage as a means of communication and information on lectures, the model have not test yet. This paper aim to present the testing process for this model. Responden this research is a lecturer in Indonesia especially who use facebook. Data collected by online survey method. SEM with PLS approach used to data analysis. The results of hypothesis testing show that perceived task-fit, utilization and satisfaction significantly influence continuance intention. The results also show that Perceived task fit, confirmation, and Service quality significantly affect satisfaction. There is a positive correlation of perceived task-fit to utilization, and service quality to confirmation. While the coefficient of determination test, shows continuance intention obtained the value of R2 = 0.723, This shows that the magnitude of the model's ability to predict perceptions of fitness and lecturer satisfaction towards the use of Facebook in lectures is 72.3%.


Data unduhan tidak tersedia.


ADAMOVIC, D., POTGIETER, A., & MEARNS, M. (2012). Knowledge sharing through social media: Investigating trends and technologies in a global marketing and advertising research company. SA Journal of Information Management, 14(1), 1–7.

AKCAOGLU, M., & DAVID, N. (2016). Using instructor-led Facebook groups to enhance students ’ perceptions of course content. Computers in Human Behavior, 1–9.

BHATTACHERJEE, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. Anol Bhattacherjee Source: MIS Quarterly, 25(3), 351–370.

BUHI, E. R., GOODSON, P., & NEILANDS, T. B. (2007). Structural Equation Modeling : A Primer for Health Behavior Researchers Objective : To introduce the state, 74–85.

CHEOK, M. L., & WONG, S. L. (2015). Predictors of E-Learning Satisfaction in Teaching and Learning for School Teachers : A Literature Review. International Journal of Instruction, 8(1), 75–90.

CHIN, W. W. (1998). The Partial Least Squares approach to Structural.

CRONBACH, L. J. (1951). Coefficient Alpha and The Internal Structure of Tests. Psychometrika, 16(3), 297–334.

DELONE, W. H., & MCLEAN, E. R. (2003). The DeLone and McLean Model of Information Systems Success : A Ten-Year Update, 19(4), 9–30.

DRAGANA, Z., ARSIC, S., MANASIJEVIC, D., & MILOŠEVIC, I. (2015). Telematics and Informatics Facebook as virtual classroom – Social networking in learning and teaching among Serbian students ˇ ivkovic, (February).

FORNELL, C., & LARCKER, D. F. (1981). (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing, 18, 39–50.

GOODHUE, L., D., & THOMPSON, R. L. (1995). Task-technology fit and individual performance, 3439.

HERLAMBANG, A. D., & HIDAYAT, W. N. (2016). Edmodo Untuk Meningkatkan Kualitas Perencanaan Proyek Dan Efektivitas Pembelajaran Di Lingkungan Pembelajaran Yang Bersifat Asinkron. Jurnal Teknologi Informasi Dan Ilmu Komputer, 3(3), 180.

HEW, K. F. (2011). Students ’ and teachers ’ use of Facebook, 27, 662–676.

HOLZINGER, A., SEARLE, G., & WERNBACHER, M. (2011). The effect of previous exposure to technology on acceptance and its importance in usability and accessibility engineering. Universal Access in the Information Society, 10(3), 245–260.

HOOPER, D., MULLEN, J., HOOPER, D., COUGHLAN, J., & MULLEN, M. R. (2008). " Structural Equation Modelling: Guidelines for Determining Model Fit Structural Equation Modelling: Guidelines for Determining Model Fit. The Electronic Journal of Business Research Methods, 6(1), 53–60. Retrieved from

KOPECKY, K. (2016). Telematics and Informatics Czech Children and Facebook – A quantitative survey q, 33, 950–958.

KUMAR, S., JOSHI, A., & SHARMA, H. (2016). A multi-analytical approach to predict the Facebook usage in higher education. Computers in Human Behavior, 55, 340–353.

LAMBIC, D. (2016). Correlation between Facebook use for educational purposes and academic performance of students, 61, 313–320.

LEWIS, B. R., TEMPLETON, G. F., & BYRD, T. A. (2005). A methodology for construct development in MIS research, (May 2004), 388–400.

LIAO, C., CHEN, J. L., & YEN, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804–2822.

LIN, W. S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human Computer Studies, 70(7), 498–507.

PATRICKS, A., LIBAQUE-SAENZ, C. F., FAN, S., & CHANG, Y. (2016). Telematics and Informatics An expectation-confirmation model of continuance intention to use mobile instant messaging. TELEMATICS AND INFORMATICS, 33(1), 34–47.

PETTER, S., DELONE, W., & MCLEAN, E. (2008). Measuring information systems success: models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236–263.

PRADANA, F., RACHMADI, A., & BACHTIAR, F. A. (2015). Penilaian Faktor Penerimaan Teknologi Blended learning di PTIIK Universitas Brawijaya dengan Metode Unified Theory of Acceptance and Use of Technology (UTAUT). Jurnal Teknologi Informasi Dan Ilmu Komputer, 2(1), 49.

SHIAU, W., HUANG, L., & SHIH, C. (2011). Understanding Continuance Intention of Blog Users : A Perspective of Flow and Expectation Confirmation Theory, 6(4), 306–317.

SILIUS, K., KAILANTO, M., & TERVAKARI, A. M. (2011). Evaluating the quality of social media in an educational context. International Journal of Emerging Technologies in Learning, 6(3), 21–27.

STRAUB, D., BOUDREAU, M.-C., & GEFEN, D. (2004). Validation Guidelines for IS Positivist Research Validation Guidelines for IS Positivist Research. The Communications of the Association for Information Systems, 13.1(c), 63.

TANEJA, A., VITRANO, J., & GENGO, N. J. (2014). Rationality-based beliefs affecting individual’s attitude and intention to use privacy controls on Facebook: An empirical investigation. Computers in Human Behavior, 38, 159–173.

TESS, P. A. (2013). The role of social media in higher education classes ( real and virtual ) – A literature review. Computers in Human Behavior, 29(5), A60–A68.

URBACH, N., & AHLEMANN, F. (2010). Structural Equation Modeling in Information Systems Research Using Partial Least Squares. Journal of Information Technology Theory and …, 11(2). Retrieved from$file/Urbach et al. 2010 Structural Equation Modeling in IS Research Using PLS.pdf

VENKATESH, V., THONG, J. Y. L., CHAN, F. K. Y., HU, P. J.-H., & BROWN, S. A. (2011). Extending the two-stage information systems continuance model: incorporating UTAUT predictors and the role of context. Information Systems Journal, 21(6), 527–555.

YEN, D. C., WU, C. S., CHENG, F. F., & HUANG, Y. W. (2010). Determinants of users’ intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Computers in Human Behavior, 26(5), 906–915.

ZIVKOVI, D., ARSI, S., & MILO, I. (2016). Exploring students ’ purposes of usage and educational usage of Facebook, 60.






Ilmu Komputer

Cara Mengutip

Persepsi Kesesuaian dan Kepuasan Penggunaan Media Sosial pada Perkuliahan: Pengujian Model. (2018). Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(6), 659-666.