Perbandingan Performa Arimax-Garch Dan Lstm Pada Data Harga Penutupan Saham PT Aneka Tambang Tbk (ANTM.JK)
DOI:
https://doi.org/10.25126/jtiik.2025128756Kata Kunci:
ANTM.JK, ARIMAX, GARCH, LSTM, sahamAbstrak
Banyaknya data deret waktu dengan pola nonlinear dan memiliki volatilitas tinggi pada berbagai sektor membuat sulit untuk melakukan pemodelan klasik seperti Autoregressive Integrated Moving Average (ARIMA). Permasalahan ini dapat diatasi salah satunya dengan mengembangkan metode Autoregressive Integrated Moving Average with Exogenous- Generalized Autoregressive Conditional Heteroskedasticity (ARIMAX-GARCH) yang memanfaatkan kovariat eksternal, sehingga memberikan solusi lebih baik pada data yang tidak stasioner. Di sisi lain, metode deep learning seperti Long Short-Term Memory (LSTM) unggul dalam menangkap pola non-linear dan dependensi jangka panjang. Oleh karena itu, penelitian ini membandingkan performa ARIMAX-GARCH dan LSTM dalam memprediksi harga saham PT Aneka Tambang Tbk (ANTM.JK). Data mingguan penutupan harga saham ANTM.JK periode 1 Januari 2018 hingga 30 Oktober 2023 digunakan dalam penelitian ini. Pemodelan ARIMAX-GARCH dengan peubah kovariat berupa data harga nikel berjangka dunia digunakan karena terdapat pengaruh signifikan harga nikel terhadap harga penutupan saham ANTM.JK dan terdeteksi adanya heteroskedastisitas dalam model. Metode berbasis machine learning, LSTM digunakan karena metode ini dikenal memiliki akurasi prediksi yang baik. Pengolahan data dilakukan menggunakan bantuan software R-Studio dan Python. Hasil penelitian menunjukkan LSTM memiliki performa yang lebih baik dengan nilai MAPE sebesar 4,425%, nilai ini lebih kecil jika dibandingkan model terbaik ARIMAX(2,1,2)-GARCH(1,1) dengan MAPE 7,326%.
Abstract
The large number of time series data with nonlinear patterns and high volatility in various sectors makes it difficult to perform classical modeling such as Autoregressive Integrated Moving Average (ARIMA). This problem can be overcome by developing the ARIMA with Exogenous- Generalized Autoregressive Conditional Heteroskedasticity (ARIMAX-GARCH) that utilizes external covariates, thus providing a better solution to non-stationary data. On the other hand, deep learning methods such as Long Short-Term Memory (LSTM) excel in capturing non-linear patterns and long-term dependencies. Therefore, this study compares the performance of ARIMAX-GARCH and LSTM in predicting the stock price of PT Aneka Tambang Tbk (ANTM.JK). Weekly closing data of ANTM.JK stock price from January 1, 2018 to October 30, 2023 are used in this study. ARIMAX-GARCH modeling with covariate variables in the form of world nickel futures price data is used because there is a significant effect of nickel prices on the closing price of ANTM.JK shares and heteroscedasticity is detected in the model. Machine learning-based method, LSTM is used because this method is known to have good prediction accuracy. Data processing is done using R-Studio and Python software. The results show that LSTM has better performance with a MAPE value of 4.425%, this value is smaller than the best model ARIMAX(2,1,2)-GARCH(1,1) with a MAPE of 7.326%.
Downloads
Referensi
ALFAT, L., HERMAWAN, H., RUSTANDIPUTRI, A., INZHAGI, R. & TANDJILAL, R., 2022. Prediksi Saham PT. Aneka Tambang Tbk. dengan K-Nearest Neighbors. JSAI (Journal Scientific and Applied Informatics), 5(3), pp.236–243. https://doi.org/10.36085/jsai.v5i3.3975.
BUDIPRASETYO, G., HANI’AH, M. & AFLAH, D.Z., 2022. Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM). Jurnal Nasional Teknologi dan Sistem Informasi, 8(3), pp.164–172. https://doi.org/10.25077/TEKNOSI.v8i3.2022.164-172.
CAHYANI, J., MUJAHIDIN, S. & FIQAR, T.P., 2023. Implementasi Metode Long Short Term Memory (LSTM) untuk Memprediksi Harga Bahan Pokok Nasional. Jurnal Sistem dan Teknologi Informasi (JustIN), 11(2), p.346. https://doi.org/10.26418/justin.v11i2.57395.
CHARISSA, E.A. & EDUARDUS, T., 2021. Pengaruh Perubahan Harga Emas Dan Nikel Terhadap Return Saham PT Aneka Tambang Tbk. [online] Universitas Gajah Mada. Available at: <https://etd.repository.ugm.ac.id/penelitian/detail/196871>.
CHEN, Y.-P., LIU, L.-F., CHE, Y., HUANG, J., LI, G.-X., SANG, G.-X., XUAN, Z.-Q. & HE, T.-F., 2022. Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China. International Journal of Environmental Research and Public Health, 19(9), p.5385. https://doi.org/10.3390/ijerph19095385.
CRYER, J.D. & CHAN, K.-S., 2008. Time series analysis: with applications in R. 2. ed., corr. print ed. Springer texts in statistics. New York, NY: Springer.
DESVINA, A.P. & MEIJER, I.O., 2018. Penerapan Model ARCH/GARCH untuk Peramalan Nilai Tukar Petani. Jurnal Sains Matematika dan Statistika, 4(1), pp.43–54.
DESVINA, A.P. & RAHMAH, N., 2016. Penerapan Metode ARCH/GARCH Dalam Peramalan Indeks Harga Saham Sektoral. Jurnal Sains Matematika dan Statistika, 2(I).
FADLI, F., 2021. Hubungan Pola Penyebaran dan Ketebalan Zona Bijih Endapan Nikel Laterit dengan Topografi Permukaan Pada PT Aneka Tambang Tbk. Indonesian Journal of Earth Sciences, 1(1), pp.10–16. https://doi.org/10.52562/injoes.v1i1.18.
HARSONO, N.D. & GALUH, A.K., 2021. Analisis pengaruh debt to equity ratio, earning per share, price to book value, dan harga nikel dunia terhadap harga saham PT. Aneka Tambang Tbk. [online] Universitas Brawijaya. Available at: <https://repository.ub.ac.id/id/eprint/191294/>.
HIDAYAT, S. & HAKIM, N., 2021. Peramalan Ekspor Luar Negeri Banten Menggunakan Model Arimax. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 2(2), pp.204–213. https://doi.org/10.46306/lb.v2i2.75.
HOCHREITER, S. & SCHMIDHUBER, J., 1997. Long Short-Term Memory. Neural Computation, 9(8), pp.1735–1780.
JANNAH, M., 2021. Kajian Metode Hybrid ARIMA-GARCH dan LSTM untuk Pendekatan Pemodelan Harga Beberapa Bahan Pokok. [Master Theses] IPB University. Available at: <https://repository.ipb.ac.id/handle/123456789/107035>.
JUANDA, B. & JUNAIDI, J., 2012. Ekonometrika deret waktu: Teori dan Aplikasi. Bogor: IPB Press.
KARTIKA, S.D. & KARMILASARI, K., 2022. Implementasi Long Short-Term Memory Pada Prediksi Harga Saham PT Aneka Tambang Tbk. Jurnal Ilmiah Komputasi, [online] 21(1). https://doi.org/10.32409/jikstik.21.1.2815.
MARVILLIA, B.L., 2013. Pemodelan dan Peramalan Penutupan Harga Saham PT. Telkom dengan Metode Arch - Garch. MATHunesa, 2(1).
MAYSOON, K., 2023. Penerapan Metode Arimax-Garch Dalam Meramalkan Indeks Harga Saham Gabungan (IHSG). Universitas Lampung.
MONTGOMERY, D.C., JENNINGS, C.L. & KULAHCI, M., 2015. Introduction to Time Series Analysis and Forecasting. 2nd Edition ed. Wiley series in probability and statistics. Hoboken, NJ: Wiley-Interscience.
OKUT, H., 2021. Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory. In: P. Luigi Mazzeo and P. Spagnolo, eds. Deep Learning Applications. [online] IntechOpen. https://doi.org/10.5772/intechopen.96180.
PRASETYO, T.A., SILITONGA, J.P., ALFREDO, M., SIAHAAN, R.S., SARAGIH, R., HANDAYANI, D. & CHANDRA, R., 2024. Evaluating the efficacy of univariate LSTM approach for COVID-19 data prediction in Indonesia. Indonesian Journal of Electrical Engineering and Computer Science, 34(2), p.1353. https://doi.org/10.11591/ijeecs.v34.i2.pp1353-1366.
PUSPITASARI, I.A., 2023. Analisis Model ARCH dan GARCH pada Saham PT. X. [Undergraduate Thesis] Institut Teknologi Sepuluh Nopember. Available at: <http://repository.its.ac.id/id/eprint/97343>.
RAMDHANI, Y. & MUBAROK, A., 2019. Analisis Time Series Prediksi Penutupan Harga Saham Antm.Jk Dengan Algoritma SVM Model Regresi. JURNAL RESPONSIF, 1(1), pp.77–82.
RUKINI, R., 2014. Model ARIMAX Dan Deteksi GARCH Untuk Peramalan Inflasi Kota Denpasar Tahun 2014. Jurnal Ekonomi Kuantitatif Terapan, 7(2), pp.168–182.
SALAM, N.F., 2021. Klasifikasi teks sentimen review e-commerce menggunakan algoritma Long Short-Term Memory (LSTM). Universitas Hasanuddin.
WAHYUNINGSIH, S., GOEJANTORO, R., SIRINGORINGO, M., SAPUTRA, A.R. & AMINAH, S., 2019. Application Seasonal Autoregressive Integrated Moving Average to Forecast the Number of East Kalimantan Hotspots. Journal of Physics: Conference Series, 1351(1), p.012085. https://doi.org/10.1088/1742-6596/1351/1/012085.
WIRANDA, L. & SADIKIN, M., 2019. Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma. Jurnal Nasional Pendidikan Teknik Informatika, 8(3), pp.184–196.
ZAHARA, S., SUGIANTO & ILMIDDAVIQ, M.B., 2020. Consumer price index prediction using Long Short Term Memory (LSTM) based cloud computing. Journal of Physics: Conference Series, 1456(1), p.012022. https://doi.org/10.1088/1742-6596/1456/1/012022.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).