Korelasi Fixation Dan Beban Kognitif pada Pengguna Lansia Dengan Eye-Tracking Pada Aplikasi Komunikasi dan Media Sosial

Penulis

DOI:

https://doi.org/10.25126/jtiik.1148591

Kata Kunci:

eye-tracking, fixation, kognitif, korelasi, media sosial, NASA TLX

Abstrak

Berdasarkan observasi terhadap pengguna lansia yang menggunakan aplikasi perangkat bergerak dalam kegiatan sehari-hari dan tantangan yang kerap mereka hadapi, muncul pertanyaan seberapa besar korelasi terkait beban kog-nitif yang mereka alami jika ditinjau dari segi penglihatan. Penelitian ini dilakukan untuk mengidentifikasi kendala yang dihadapi sebagai masukan untuk pengembang dalam merancang sebuah aplikasi perangkat bergerak. Eye-tracking digunakan karena sifatnya yang tidak invasif, sesuai bagi pengguna lansia. Untuk mengukur beban kogni-tif yang dialami, digunakan alat lapor beban kognitif mandiri National Aeronautics and Space Administration Task Load Index (NASA TLX). Setiap dimensi yang relevan, yaitu tuntutan mental, tuntutan temporal, kinerja, usaha, dan frustrasi, dianalisis terpisah dengan variabel fixation (count dan duration) menggunakan uji korelasi Spear-man. Hasil pengujian memperlihatkan adanya korelasi positif antara fixation count dengan tuntutan mental, upaya, dan frustrasi, dengan kekuatan rendah hingga kuat. Selain itu ditemukan korelasi negatif dengan kekuatan rendah antara fixation count dan kinerja dan dua korelasi positif dengan kekuatan sedang terkait fixation duration, yaitu dengan upaya dan frustrasi. Temuan ini menunjukkan tantangan kognitif yang dihadapi oleh lansia yang direpre-sentasikan oleh beberapa dimensi saat menggunakan aplikasi perangkat bergerak yang dilihat melalui media peng-lihatan manusia. Hasil penelitian ini mengedepankan penggunaan media eye-tracking sebagai salah satu indikator tuntutan mental yang mengarahkan pengembangan lebih lanjut antarmuka aplikasi yang berfokus pada interaksi dan usability bagi para lansia. Desain dari task, keahlian dan kebiasaan para lansia, serta desain aplikasi menjadi faktor yang memengaruhi hubungan antar variabel yang diteliti dalam penelitian ini.

 

Abstract

 

According to the observations of elderly users who use mobile application for daily activities and the challenges they often face, arising a question to what extent the correlation regarding the cognitive load they experienced from a vision perspective. This study is conducted to discover the obstacles encountered as an insight for develop-ers in designing mobile applications. Eye-tracking was used due to its non-invasive nature, hence suitable. To measure the cognitive load, a self-reportning cognitive load tool, i.e., the National Aeronautics and Space Admi-nistration Task Load Index (NASA TLX), was used. Each relevant dimension, i.e., mental demands, temporal de-mands, performance, effort, and frustration, was individually analyzed with fixation variables (count and duration) using Spearman's correlation test. The result suggested low to strong positive correlations between fixation count and mental demand, effort, and frustration. A low negative correlation between fixation counts and performance, and two, moderate and positive correlations related to fixation duration, i.e., effort and frustration were suggested. The findings suggested visual cognitive challenges of mobile applications of elderlies. The findings also highlight how eye-tracking is used as an indicator for mental demand that directs further development of user interface that focus on interaction and usability for elderly. Task designs, skills and habits of elderlies, and application designs were suggested to affect the correlation of variables investigated in this study.

 

Downloads

Download data is not yet available.

Biografi Penulis

  • Aryo Pinandito, Universitas Brawijaya, Malang

    Google Scholar:

    https://scholar.google.co.id/citations?user=v9a4dvcAAAAJ&hl=en

     

    ID SCOPUS  :  56595142200

     

    ID SINTA  :  5993073

Referensi

ASOSIASI PENYELENGGARA JASA INTERNET INDONESIA, 2023. Survey Penetrasi & Perilaku Retail 2023. [online] Available at: <https://survei.apjii.or.id/survei/2023> [Accessed 22 July 2023].

BADAN PUSAT STATISTIK, 2022. Statistik Penduduk Lanjut Usia 2022. [online] Available at: <https://www.bps.go.id/publication/2021/12/21/c3fd9f27372f6ddcf7462006/statistik-penduduk-lanjut-usia-2021.html> [Accessed 15 February 2023].

DEBUE, N. AND VAN DE LEEMPUT, C., 2014. What does germane load mean? An empirical contribution to the cognitive load theory. Frontiers in Psychology, 5(SEP), p.81605.

https://doi.org/10.3389/FPSYG.2014.01099/ABSTRACT.

DEVOS, H., GUSTAFSON, K., AHMADNEZHAD, P., LIAO, K., MAHNKEN, J.D., BROOKS, W.M. AND BURNS, J.M., 2020. Psychometric Properties of NASA-TLX and Index of Cognitive Activity as Measures of Cognitive Workload in Older Adults. Brain Sciences 2020, Vol. 10, Page 994, [online] 10(12), p.994. https://doi.org/10.3390/BRAINSCI10120994.

DIAS, R.D., NGO-HOWARD, M.C., BOSKOVSKI, M.T., ZENATI, M.A. AND YULE, S.J., 2018. Systematic review of measurement tools to assess surgeons’ intraoperative cognitive workload. British Journal of Surgery, [online] 105(5), pp.491–501. https://doi.org/10.1002/BJS.10795.

FATIMAH, S., RAOF, A., HASHIM, N.A. AND ZAINUDDIN, A., 2019. An Evaluation of Quran Memorization Mobile App among Middle-Aged Adults and Early Elderly. Journal of Computing Research & Innovation (JCRINN).

GALY, E., CARIOU, M. AND MÉLAN, C., 2012. What is the relationship between mental workload factors and cognitive load types? International Journal of Psychophysiology, 83(3), pp.269–275. https://doi.org/10.1016/J.IJPSYCHO.2011.09.023.

GUO, Q., XUE, C., LIN, Y., NIU, Y. AND CHEN, M., 2017. A study for human-machine interface design of spacecraft display & control device based on eye-tracking experiments. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), [online] 10276 LNAI, pp.211–221. https://doi.org/10.1007/978-3-319-58475-1_16/TABLES/3.

HVELPLUND, K.T., 2017. Translators’ Use of Digital Resources during Translation. HERMES - Journal of Language and Communication in Business, [online] 0(56), pp.71–87. https://doi.org/10.7146/hjlcb.v0i56.97205.

JOSEPH, A.W., JEEVITHA SHREE, D. V., SALUJA, K.P.S., MUKHOPADHYAY, A., MURUGESH, R. AND BISWAS, P., 2021. Eye Tracking to Understand Impact of Aging on Mobile Phone Applications. Smart Innovation, Systems and Technologies, [online] 221, pp.315–326. https://doi.org/10.1007/978-981-16-0041-8_27/COVER.

KUHAR, M. AND MERČUN, T., 2022. Exploring user experience in digital libraries through questionnaire and eye-tracking data. Library & Information Science Research, 44(3), p.101175. https://doi.org/10.1016/J.LISR.2022.101175.

LEE, J.Y., DONKERS, J., JARODZKA, H. AND VAN MERRIËNBOER, J.J.G., 2019. How prior knowledge affects problem-solving performance in a medical simulation game: Using game-logs and eye-tracking. Computers in Human Behavior, 99, pp.268–277. https://doi.org/10.1016/j.chb.2019.05.035.

LENZNER, T., 2012. Effects of Survey Question Comprehensibility on Response Quality. Field Methods, 24(4), pp.409–428. https://doi.org/10.1177/1525822X12448166.

LENZNER, T., KACZMIREK, L. AND GALESIC, M., 2011. Seeing through the eyes of the respondent: An eye-tracking study on survey question comprehension. International Journal of Public Opinion Research, 23(3), pp.361–373. https://doi.org/10.1093/ijpor/edq053.

LIN, C.J. AND HO, S.H., 2020. The development of a mobile user interface ability evaluation system for the elderly. Applied Ergonomics, 89. https://doi.org/10.1016/J.APERGO.2020.103215.

LIU, H.C., LAI, M.L. AND CHUANG, H.H., 2011. Using eye-tracking technology to investigate the redundant effect of multimedia web pages on viewers’ cognitive processes. Computers in Human Behavior, 27(6), pp.2410–2417. https://doi.org/10.1016/J.CHB.2011.06.012.

LIU, J.-C., LI, K.-A., YEH, S.-L. AND CHIEN, S.-Y., 2022. Assessing Perceptual Load and Cognitive Load by Fixation-Related Information of Eye Movements. Sensors 2022, Vol. 22, Page 1187, [online] 22(3), p.1187. https://doi.org/10.3390/S22031187.

MAHESWARI, K., 2022. Internet sebagai Pelipur Jiwa Lara Lansia - #DigitalBisa. [online] Available at: <https://digitalbisa.id/artikel/internet-sebagai-pelipur-jiwa-lara-lansia-wOE9X> [Accessed 21 March 2023].

SCHALL, A. AND BERGSTROM, J.R., 2014. Eye Tracking in User Experience Design. https://doi.org/https://doi.org/10.1016/C2012-0-06867-6.

SWELLER, J., 2010. Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, https://doi.org/10.1007/s10648-010-9128-5.

SWELLER, J., VAN MERRIENBOER, J.J.G. AND PAAS, F.G.W.C., 1998. Cognitive Architecture and Instructional Design. Psychology Review.

WANG, Q., YANG, S., LIU, M., CAO, Z. AND MA, Q., 2014. An eye-tracking study of website complexity from cognitive load perspective. Decision Support Systems, 62, pp.1–10. https://doi.org/10.1016/J.DSS.2014.02.007.

ZAGERMANN, J., PFEIL, U. AND REITERER, H., 2016. Measuring cognitive load using eye tracking technology in visual computing. ACM International Conference Proceeding Series, [online] 24-October-2016, pp.78–85. https://doi.org/10.1145/2993901.2993908.

Diterbitkan

26-08-2024

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Korelasi Fixation Dan Beban Kognitif pada Pengguna Lansia Dengan Eye-Tracking Pada Aplikasi Komunikasi dan Media Sosial. (2024). Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(4), 817-826. https://doi.org/10.25126/jtiik.1148591