Clustering Credit Card Holder Berdasarkan Pembayaran Tagihan Menggunakan Improved K-Means dengan Particle Swarm Optimization
DOI:
https://doi.org/10.25126/jtiik.201856858Kata Kunci:
credit card holders, clustering, improved k-means, particle swarm optimizationAbstrak
Abstrak
Kartu kredit merupakan salah satu bentuk media bagi nasabah untuk melakukan kredit dalam sebuah proses transaksi yang telah disetujui oleh bank bersangkutan. Bank harus selektif dalam menganalisa nasabah yang ingin mengajukan penerbitan kartu kredit untuk menghindari adanya kredit macet yang dapat menimbulkan kerugian pada bank, sehingga sangat penting untuk mengetahui karakteristik nasabah dengan melakukan clustering. Bank akan dapat mengambil keputusan untuk pertimbangan penerbitan kartu kredit dengan mencocokkan nasabah baru kedalam cluster-cluster yang telah dibentuk dan mengetahui kelayakan nasabah untuk diberikan akses kartu kredit dalam melakukan transaksi. K-Means adalah salah satu metode populer yang digunakan untuk clustering. Tetapi, metode K-Means tidak dapat memberikan solusi optimum karena keterbatasannya dalam penentuan titik centroid yang optimal, sehingga untuk memperbaiki metode K-Means dalam penelitian ini digunakan salah satu algoritma evolusi yaitu Particle Swarm Optimization (PSO) untuk generate titik centroid optimum yang digunakan dalam proses perhitungan K-Means. Hasil pengujian dilakukan dengan membandingkan nilai Silhouette Coefficient dari cluster yang dibentuk menggunakan K-Means murni dan Improved K-Means dengan PSO yang menghasilkan nilai masing–masing yaitu 0,3312 dan 0,3730.
Abstract
Credit card is one form of media for customers to credit in a transaction process that has been approved by the bank concerned. Banks should be selective in analyzing customers who want to apply for credit card issuance to avoid bad debts that can cause losses to banks, so it is very important to know the characteristics of customers by clustering. The Bank will be able to take decisions for credit card issuance by matching new customers into the established clusters and knowing the eligibility of customers to be granted credit card access in making transactions. K-Means is a popular method that is applied in the clustering process. However, the K-Means method can not provide the optimum solution because of its limitation in determining the optimal centroid point, so to improve the K-Means method in this research is used one of the evolution algorithm namely Particle Swarm Optimization (PSO) to generate optimum centroid point used in k-means calculation process. The test results were performed by comparing the coefficient silhouette values of the clusters formed using pure K-Means and Improved K-Means with PSO which yielded respective values of 0,31614 and 0,39484, respectively.
Downloads
Referensi
ADOLFSSON, A., ACKERMAN, M., BROWNSTEIN, N.C., 2018, To cluster, or not to cluster : an analysis of clusterability methods, Pattern Recognition, doi: https://doi.org/10.1016/j.patcog.2018.10.026
ANGGODO, Y.P., CAHYANINGRUM, W., FAUZIYAH, A.N., CHOLISSODIN, I., 2017, Hybrid K-Means dan Particle Swarm Optimization untuk clustering nasabah kredit, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 4, No. 2, Juni 2017, hlm. 104-110.
BHATI, P. & SHARMA, M., 2015, Credit Card Number Fraud Detection Using K-Means with Hidden Markov Method, SSRG International Journal of Mobile Computing & Application (SSRG-IJMCA) – volume 2 Issue 3 May to June 2015.
CARNEIRO, N., FIGUEIRA G., COSTA M., 2017, A Data Mining based system for credit card fraud detection in e-tai, Decision Support System doi:10.1016/j.dss.2017.01.00.
CHOUGULE, THAKARE A.D., KALE P., GOLE M., NANEKAR P., 2015, Genetic K-Means Algorithm for Credit Card Fraud Detection, International Journal of Computer Science and Information Technologies (IJCSIT), Vol. 6 (2) , 2015, 1724-1727.
DEWRI L. V., ISLAM M.R., SAHA N.K., 2016, Behavioral analysis of credit card users in a developing country : A case of Bangladesh, International Journal of Business and Management; Vol. 11, No. 4; 2016.
HAN, P. Y & CHAI J., 2012, The Application of K-Means in personal credit analysis, Trans Tech Publications, Switzerland.
IRWANTO, PURWANANTO, Y., SOELAIMAN R., 2012, Optimasi Kinerja Algoritma Klasterisasi K-Means untuk Kuantisasi Warna Citra, Jurnal Teknik ITS Vol. 1, No. 1 (Sept. 2012) ISSN: 2301-9271.
KARIMOV J. & OZBAYOGLU M., 2015, Clustering Quality Improvement of K-Means using a Hybrid Evolutionary Model, Procedia Computer Science 61 (2015) 38 – 45 .
KUMARI, S., CHOUBEY, ABHA., 2017, Credit Card Fraud Detection Using HMM and K-Means Clustering Algorithm, International Journal of Scientific Research Engineering & Technology (IJSRET).
LESTARI, B.A., SUHARJO, B., MUFLIKHATI, I., 2017, Minat Kepemilikan Kartu Kredit (Studi Kasus Kota Bogor), Jurnal Aplikasi Bisnis dan Manajemen, Vol. 3 No. 1, Januari 2017.
OKTANISA, I., & SUPIANTO, A.A., 2018, Perbandingan teknik klasifikasi dalam Data Mining untuk Bank Direct Marketing, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 5, No. 5, Oktober 2018, hlm. 567-576.
PARAMARTHA, G. N. W., 2017, Analisis Perbandingan Metode K-Means dengan Improved Semi Supervised K-Means pada Data Indeks Pembangunan Manusia (IPM), Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 1, No. 9, Juni 2017, hlm. 813-824.
PORNSING, 2014, A Particle Swarm Optimization for the vehicle routing problem. Open Dissertation University of Rhode Island.
RANI, A. J. M. & PARTHIBAN L., 2015, Improved Particle Swarm Optimization And K-means Clustering Algorithm For News Article, Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems.
TAN L., 2015, A Clustering K-Means Algorithm Based on Improved PSO Algorithm, 2015 Fifth International Conference on Communication Systems and Network Technologies.
VAISHALI, 2014, Fraud Detection in credit card clustering approach, International Journal of Computer Applications (0975 – 8887) Volume 98– No.3, July 2014.
WAHYUNI, I., AULIYA, Y.A., RAHMI, A. MAHMUDY, W. F., 2016. Clustering nasabah bank berdasarkan tingkat likuiditas menggunakan hybrid particle swarm optimization. Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA), vol. 10, no. 2, pp. 24-33.
VIJI, D. & BANU S. K.Z., 2018, An Improved Credit Card Fraud Detection Using K-Means Clustering Algorithm, International Journal of Engineering Science Invention (IJESI).
YEH I.C. & LIEN C.H., 2009, The comparison of data mining techniques for the predictive accuracy of probability of default credit card clients, Expert System with Applications.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).