Segmentasi Wilayah Terdampak Bencana Berdasarkan Fitur Geo-Posisi

Penulis

DOI:

https://doi.org/10.25126/jtiik.1148557

Kata Kunci:

BMKG, BNPB, Disaster, Geo-position, Haversine Formula, Segmentation

Abstrak

Penelitian ini memperkenalkan prototipe aplikasi segmentasi wilayah terdampak bencana (DAS-Apps) untuk melakukan segmentasi wilayah terdampak bencana berdasarkan fitur latitude dan longitude (geo-posisi). Aplikasi ini berfungsi untuk menyeleksi informasi bencana dari media sosial, data resmi pemerintah dari Badan Nasional Penanggulangan Bencana (BNPB), dan informasi bencana yang dikirimkan melalui DAS-Apps secara real-time. Daerah terdampak dipetakan berdasarkan data geo-posisi kemudian dihitung menggunakan metode Haversine Formula untuk menunjukkan peristiwa bencana terjadi dan seberapa jauh jangkauan bencana dirasakan. Pada penelitian ini, simulasi DAS-Apps dilakukan menggunakan dataset gempa (M ≥ 5.0) yang berasal dari Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) pada rentang bulan November dan Desember 2022 khusunya data bencana gempa bumi untuk wilayah Cianjur, Indonesia. Hasil pengujian menunjukkan bahwa prototipe DAS-Apps dapat melakukan proses segmentasi wilayah berdasarkan radius geo-posisi dari titik informasi bencana sehingga dapat diimplementasikan untuk untuk framework aplikasi tanggap darurat dan manajemen bencana pada penelitian selanjutnya.

 

Abstract

 

This research introduces a prototype Disaster-affected Area Segmentation Application (DAS-Apps) designed to perform segmentation of disaster-affected areas based on latitude and longitude features (geo-positioning). The application functions to filter disaster information from social media, official government data from Badan Nasional Penanggulangan Bencana (BNPB), and disaster information submitted in real-time through DAS-Apps. The affected areas are mapped based on geo-positioning data, and then calculated using the Haversine Formula method to indicate when and how far-reaching the disaster events are perceived. In this study, DAS-Apps simulations were conducted using earthquake datasets (magnitude ≥ 5.0) from the Meteorology, Climatology, and Geophysics Agency (BMKG) during the months of November and December 2022, specifically earthquake data for the Cianjur region, Indonesia. The test results indicate that the DAS-Apps prototype can successfully carry out the area segmentation process based on the geo-positioning radius from the disaster information point, making it suitable for implementation in emergency response and disaster management application frameworks in future research.

Downloads

Download data is not yet available.

Referensi

BIRD, S., KLEIN, E. AND LOPER, E., 2009. Natural language processing with Python. Cambridge: O’Reilly.

ESMAEILZADEH, A., CACHO, J.R.F., TAGHVA, K., KAMBAR, M.E.Z.N. AND HAJIALI, M., 2022. Building Wikipedia N-grams with Apache Spark. In: K. Arai, ed. Intelligent Computing. Cham: Springer International Publishing. pp.672–684.

FAN, C., ZHANG, C., YAHJA, A. AND MOSTAFAVI, A., 2021. Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. International Journal of Information Management, 56, p.102049. https://doi.org/10.1016/j.ijinfomgt.2019.102049.

IBRAHIM, T. AND MISHRA, A., 2021. A Conceptual Design of Smart Management System for Flooding Disaster. International Journal of Environmental Research and Public Health, 18(16), p.8632. https://doi.org/10.3390/ijerph18168632.

JURAFSKY, D. AND MARTIN, J.H., 2009. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. 2nd ed ed. Prentice Hall series in artificial intelligence. Upper Saddle River, N.J: Pearson Prentice Hall.

LUMBAN BATU, J.A.J. AND FIBRIANI, C., 2017. Analisis Penentuan Lokasi Evakuasi Bencana Banjir Dengan Pemanfaatan Sistem Informasi Geografis Dan Metode Simple Additive Weighting. Jurnal Teknologi Informasi dan Ilmu Komputer, 4(2), p.127. https://doi.org/10.25126/jtiik.201742315.

MANNING, C.D., RAGHAVAN, P. AND SCHÜTZE, H., 2008. Introduction to information retrieval. New York: Cambridge University Press.

MUHAMMAD, K., AHMAD, J. AND BAIK, S.W., 2018. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Learning System in Real-time Machine Vision, 288, pp.30–42. https://doi.org/10.1016/j.neucom.2017.04.083.

OGIE, R.I., CLARKE, R.J., FOREHEAD, H. AND PEREZ, P., 2019. Crowdsourced social media data for disaster management: Lessons from the PetaJakarta.org project. Computers, Environment and Urban Systems, 73, pp.108–117. https://doi.org/10.1016/j.compenvurbsys.2018.09.002.

PHENGSUWAN, J., SHAH, T., THEKKUMMAL, N.B., WEN, Z., SUN, R., PULLARKATT, D., THIRUGNANAM, H., RAMESH, M.V., MORGAN, G., JAMES, P. AND RANJAN, R., 2021. Use of Social Media Data in Disaster Management: A Survey. Future Internet, 13(2), p.46. https://doi.org/10.3390/fi13020046.

PRASETYA, D.A., NGUYEN, P.T., FAIZULLIN, R., ISWANTO, I. AND ARMAY, F., N.D. Resolving the Shortest Path Problem using the Haversine Algorithm. Journal of critical reviews.

RAHARDJA, U., 2022. Application of the C4.5 Algorithm for Identifying Regional Zone Status Using a Decision Tree in the Covid-19 Series. Aptisi Transactions on Technopreneurship (ATT), 4(2), pp.164–173. https://doi.org/10.34306/att.v4i2.234.

ROY, A., ANIL, R., LAI, G., LEE, B., ZHAO, J., ZHANG, S., WANG, S., ZHANG, Y., WU, S., SWAVELY, R., TAO, YU, DAO, P., FIFTY, C., CHEN, Z. AND WU, Y., 2022. N-Grammer: Augmenting Transformers with latent n-grams. Available at: <http://arxiv.org/abs/2207.06366> [Accessed 13 December 2023].

SHIROWZHAN, S., TAN, W. AND SEPASGOZAR, S.M.E., 2020. Digital Twin and CyberGIS for Improving Connectivity and Measuring the Impact of Infrastructure Construction Planning in Smart Cities. ISPRS International Journal of Geo-Information, 9(4), p.240. https://doi.org/10.3390/ijgi9040240.

SUTEDI, A., AULAWI, H., WALUJODJATI, E. AND FATIMAH, D.D.S., 2022. C4.5 ALGORITHM FOR DISASTER IDENTIFIER SYSTEM. 3(3), pp.495–500. https://doi.org/doi.org/10.20884/1.jutif.2022.3.3.160.

SUTEDI, A., RAHAYU, S., ELSEN, R. AND SUPRIATNA, A.D., 2019. Natural disaster topic selection using decision tree classification. Journal of Physics: Conference Series, 1402(7), p.077034. https://doi.org/10.1088/1742-6596/1402/7/077034.

TEDYYANA, A., FAUZI, M., ENDA, D., RATNAWATI, F. AND SYAM, E., 2022. Perancangan Aplikasi Tanggap Api Berbasis Android Menggunakan Metode Design Sprint. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(2), p.215. https://doi.org/10.25126/jtiik.2022914022.

Tibshirani, R., Friedman, J. and Hastie, T., n.d. The Elements of Statistical Learning. Second Edition.

YU, M., YANG, C. AND LI, Y., 2018. Big Data in Natural Disaster Management: A Review. Geosciences, 8(5), p.165. https://doi.org/10.3390/geosciences8050165.

BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA (BMKG) 2022, 'Analisis Gempabumi Cianjur (Jawa Barat) Mw 5.6 Tanggal 21 November 2022', bmkg.go.id, [online] Available at: https://www.bmkg.go.id/berita/?p=42632&lang=ID&tag=cianjur [Accessed 20 December 2022].

KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL 2022, 'Geologi Gempa Cianjur - 21 November 2022', [online] vsi.esdm.go.id, Available at: https://vsi.esdm.go.id/index.php/gempabumi-a-tsunami/kejadian-gempabumi-a-tsunami/4023 [Accessed 23 December 2022].

Diterbitkan

26-08-2024

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Segmentasi Wilayah Terdampak Bencana Berdasarkan Fitur Geo-Posisi. (2024). Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(4), 797-804. https://doi.org/10.25126/jtiik.1148557