Implementasi Mask R-CNN pada Perhutungan Tinggi dan Lebar Karang untuk Memantau Pertumbuhan Transplantasi Karang

Penulis

  • Naufal Alkhalis Universitas Syiah Kuala, Banda Aceh
  • Husaini Husaini Universitas Syiah Kuala, Banda Aceh
  • Haekal Azief Haridhi Universitas Syiah Kuala, Banda Aceh
  • Cut Nadilla Maretna Universitas Syiah Kuala, Banda Aceh
  • Nur Fadli Universitas Syiah Kuala, Banda Aceh
  • Yudi Haditiar Universitas Syiah Kuala, Banda Aceh
  • Muhammad Nanda Universitas Syiah Kuala, Banda Aceh
  • Maria Ulfah Universitas Syiah Kuala, Banda Aceh
  • Kris Handoko Kementerian Kelautan dan Perikanan Repulik Indonesia
  • Intan Malayana Universitas Syiah Kuala, Banda Aceh
  • Arsa Cindy Safitri Universitas Syiah Kuala, Banda Aceh

DOI:

https://doi.org/10.25126/jtiik.938374

Kata Kunci:

Terumbu Karang, Mask R-CNN , Segmentasi, Transplantasi, Detectron2, Pengukuran

Abstrak

Terumbu karang merupakan ekosistem yang berperan penting di laut serta sangat rentan terhadap kerusakan. Transplantasi karang telah menjadi salah satu pendekatan yang dilakukan untuk melestarikan terumbu karang. Pasca transplantasi, pemantauan perlu dilakukan untuk melihat pertumbuhan karang. Dalam upaya pemantauan, para penyelam harus membawa alat selam, penggaris dan buku untuk mengukur dan mencatat satu-satu karang yang telah ditransplantasi. Proses tersebut menghabiskan investasi finansial, waktu dan tenaga yang besar. Pemantauan dapat dioptimalkan dengan mengimplementasikan algoritma Mask Region Convolutional Neural Network (Mask R-CNN) melalui library Detectron2 pada citra transplantasi karang. Proses implementasi akan menghasilkan model yang dapat melakukan segmentasi pada objek karang. Segmentasi tersebut dapat dikalkulasikan untuk melihat tinggi dan lebar karang sebagai indikator pertumbuhan. Implementasi model melibatkan tujuh backbone segmentasi instance dengan jadwal laju pembelajaran sebesar tiga kali. Berdasarkan hasil penelitian, model yang dihasilkan telah berhasil diimplementasikan dalam mengukur tinggi dan lebar dari karang transplantasi. Perbandingan antara hasil pengukuran menggunakan model Mask R-CNN dan pengukuran langsung menunjukkan konsistensi yang baik. Dengan demikian para penyelam hanya perlu memaksimalkan sumberdaya yang dimiliki untuk mengambil citra karang dengan jarak yang telah ditentukan sehingga dapat meringkas waktu penyelaman.

 

Abstract

 

Coral reefs are ecosystems that play an important role in the sea and are very vulnerable to damage. Coral transplantation has become one of the approaches taken to preserve coral reefs. Post-transplant, monitoring needs to be done to see coral growth. In monitoring efforts, divers must carry diving equipment, rulers and books to measure and record the only corals that have been transplanted. The process consumes a huge investment of finance, time and effort. Monitoring can be optimized by implementing the Mask Region Convolutional Neural Network (Mask R-CNN) algorithm through the Detectron2 library on coral transplant images. The implementation process will produce a model that can segment coral objects. The segmentation can be calculated to see the height and width of corals as growth indicators. The model implementation involves seven backbone segmentation instances with a learning rate schedule of three times. Based on the results of the study, the resulting model has been successfully implemented in measuring the height and width of transplanted corals. Comparison between measurement results using the Mask R-CNN model and direct measurements showed good consistency. Thus, divers only need to maximize their resources to take images of corals with a predetermined distance so as to shorten dive time.

Downloads

Download data is not yet available.

Referensi

AGNEW, C., EISING, C., DENNY, P., SCANLAN, A., VAN DE VEN, P., & GRUA, E. M., 2023. Quantifying the Effects of Ground Truth Annotation Quality on Object Detection and Instance Segmentation Performance. IEEE Access, 11, pp.25174–25188. https://doi.org/10.1109/ACCESS.2023.3256723.

AKSHAYANIVASHINI C.V., & KRISVAN P., 2023. Deep Learning-Based Instance Segmentation of Aircraft in Aerial Images using Detectron2. https://ssrn.com/abstract=4485468.

ALAMSYAH, R., USPAR, PERMATASARI, A., & NURFADILLAH., 2019. Sebaran dan Luasan Terumbu Karang di Perairan Pulau Larearea Menggunakan Citra Landsat 8. In Jurnal Agrominansia, Vol. 4, Issue 1.

BUDI, R., HARIANTO, A.R, & SETYATI, E., 2023. Segmentasi Citra Area Tumpukan Sampah Dengan Memanfaatkan Mask R-CNN. Journal of Intelligent System and Computation, 5(1), pp.58–64. https://doi.org/10.52985/insyst.v5i1.305.

BUKHARI, B., PUTRA, R.D., & KURNIAWAN, D., 2021. Optimasi Penggunaan Waktu Pembersihan untuk Suksesi Transplantasi Karang Acropora Millepora di Perairan Malang Rapat, Bintan, Jurnal Kelautan Nasional, 16(2), pp.145-156.

DE CARVALHO, O.L.F., DE CARVALHO, O.A., ALBUQUERQUE, A. O. DE, BEM, P. P. DE, SILVA, C. R., FERREIRA, P. H. G., DE MOURA, R. D. S., GOMES, R. A. T., GUIMARÃES, R. F., & BORGES, D. L., 2021. Instance segmentation for large, multi-channel remote sensing imagery using mask-RCNN and a mosaicking approach. Remote Sensing, 13(1), pp.1–24. https://doi.org/10.3390/rs13010039.

FERSE, S.C.A., HEIN,M.Y., & RÖLFER, L., 2021. A survey of current trends and suggested future directions in coral transplantation for reef restoration. In PLoS ONE. Vol. 16, Public Library of Science. https://doi.org/10.1371/journal.pone.0249966.

GONZALEZ, S., ARELLANO, C., & TAPIA, J., 2019. DeepBlueBerry: Quantification of Blueberries in the Wild Using Instance Segmentation. https://doi.org/10.1109/ACCESS.2019.2933062.

SANUSI A.P., FARIZA, A., & SETIAWARDHANA., 2023. Klasifikasi Tinggi Badan Menggunakan Metode Mask R-CNN. Indonesian Journal of Computer Science Attribution, 12(4), p.2050.

LEI, X., PAN, H., & HUANG, X., 2019. A dilated cnn model for image classification. IEEE Access, Vol. 7, pp.124087–124095. https://doi.org/10.1109/ACCESS.2019.2927169.

MA, X., LI, Z., & ZHANG, L., 2022. An Improved ResNet-50 for Garbage Image Classification. Tehnicki Vjesnik, 29(5), pp.1552–1559. https://doi.org/10.17559/TV-20220420124810.

PHAM, V., PHAM, C., & DANG, T., 2020. Road Damage Detection and Classification with Detectron2 and Faster R-CNN. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, pp.5592–5601. https://doi.org/10.1109/BigData50022.2020.9378027.

RIDHOVAN, A., & SUHARSO, A., 2022. Penerapan Metode Residual Network (Resnet) dalam Klasifikasi Penyakit pada Daun Gandum. Jurnal Ilmiah Penelitian dan Pembelajaran Informatika. Pp.58-65. https://doi.org/10.29100/jipi.v7i1.2410.

RUMKOREM, O. L. Y., KURNIA, R., & YULIANDA, F., 2019. Asosiasi Antara Tutupan Komunitas Karang Dengan Komunitas Ikan Terumbu Karang Di Pesisir Timur Pulau Biak, Kabupaten Biak Numfor. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 11(3), pp.615–625. https://doi.org/10.29244/jitkt.v11i3.23375.

WONG, A.S., VRONTOS, S., & TAYLOR, M. L., 2022. An assessment of people living by coral reefs over space and time. Global Change Biology, 28(23), pp.7139–7153. https://doi.org/10.1111/gcb.16391.

SOUTER, D., PLANES, S., WICQUART, J., LOGAN, M., OBURA, D., & STAUB, F., 2020. Status of Coral Reefs of the World: 2020 Executive Summary.

TAHIR, H., IFTIKHAR, A., & MUMRAIZ, M., 2021. Forecasting COVID-19 via registration slips of patients using ResNet-101 and performance analysis and comparison of prediction for COVID-19 using faster R-CNN, mask R-CNN, and ResNet-50. Proceedings of the 2021 1st International Conference on Advances in Electrical, Computing, Communications and Sustainable Technologies, ICAECT 2021. https://doi.org/10.1109/ICAECT49130.2021.9392487

VO, A. H., SON, L.H., VO, M.T., & LE, T., 2019. A Novel Framework for Trash Classification Using Deep Transfer Learning. IEEE Access, Vol. 7, pp.178631–178639. https://doi.org/10.1109/ACCESS.2019.2959033.

ZHOU, T., ZHAO, Y., & WU, J., 2021. ResNeXt and Res2Net Structures for Speaker Verification. 2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings, pp.301–307. https://doi.org/10.1109/SLT48900.2021.9383531.

Diterbitkan

31-07-2024

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Implementasi Mask R-CNN pada Perhutungan Tinggi dan Lebar Karang untuk Memantau Pertumbuhan Transplantasi Karang. (2024). Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(3), 603-614. https://doi.org/10.25126/jtiik.938374