Prediksi Burnout pada Programmer menggunakan Teknik Pengenalan Pola untuk Identifikasi Dini dana Intervensi
DOI:
https://doi.org/10.25126/jtiik.1138070Kata Kunci:
Burnout , Programmer, Pengenalan Pola, Identifikasi Dini, IntervensiAbstrak
Burnout atau kelelahan kerja merupakan sebuah fenomena yang sering dihadapi oleh profesional dalam berbagai bidang, termasuk programmer. Dampak negatif dari burnout mencakup penurunan kesejahteraan individu dan produktivitas kerja. Penelitian ini berkontribusi pada subjek penelitian dengan mengembangkan sebuah model prediktif yang inovatif untuk identifikasi dini dan intervensi burnout pada programmer menggunakan teknik pengenalan pola. Originalitas penelitian ini terletak pada penerapan teknik pengenalan pola secara khusus pada populasi programmer, yang belum banyak dieksplorasi dalam literatur sebelumnya. Data yang digunakan dalam penelitian ini diperoleh dari kuesioner yang mencakup pertanyaan terkait pola kerja, kebiasaan individu, dan indikator burnout berdasarkan kriteria Maslach Burnout Inventory (MBI). Metodologi yang diterapkan melibatkan pengumpulan dan pra-pemrosesan data, ekstraksi fitur, dan aplikasi algoritma pengenalan pola untuk konstruksi model. Hasil penelitian menunjukkan bahwa model yang dikembangkan mampu mengidentifikasi risiko burnout dengan akurasi yang tinggi. Teknik pengenalan pola terbukti efektif dalam menggali pola dan insight yang relevan untuk identifikasi dan intervensi burnout pada programmer, sehingga dapat memberikan kontribusi signifikan dalam pemahaman dan pencegahan burnout di kalangan programmer. Penelitian ini diharapkan dapat digunakan sebagai referensi dalam praktik dan penelitian lebih lanjut.
Abstract
Burnout is a phenomenon frequently encountered by professionals across various fields, including programmers. The negative impacts of burnout include reduced individual well-being and decreased work productivity. This study contributes to the subject by developing an innovative predictive model for early identification and intervention of burnout in programmers using pattern recognition techniques. The originality of this research lies in the application of pattern recognition techniques specifically to the programmer population, which has not been extensively explored in previous literature. The data used in this study were obtained from questionnaires that included questions related to work patterns, individual habits, and burnout indicators based on the Maslach Burnout Inventory (MBI) criteria. The methodology involved data collection and preprocessing, feature extraction, and the application of pattern recognition algorithms for model construction. The results indicate that the developed model is capable of identifying burnout risk with high accuracy. Pattern recognition techniques proved effective in uncovering relevant patterns and insights for the identification and intervention of burnout in programmers, thereby making a significant contribution to the understanding and prevention of burnout among programmers. This study is expected to serve as a reference in both practice and further research.
Downloads
Referensi
AGUSTINA, N., IHSAN, C. N., TINGGI, S., BANDUNG, T., RISET, B., NASIONAL, I., & KORESPONDENSI, P. 2023. Pendekatan Ensemble Untuk Analisis Sentimen Covid19 Menggunakan Pengklasifikasi Soft Voting An Ensemble Approach For Covid19 Sentiment Analysis Using Soft Voting Classifier. 10(2), 263–270. https://doi.org/10.25126/jtiik.2023106215.
ARABAMERI, A., PRADHAN, B., & LOMBARDO, L. 2019. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. CATENA, 183, 104223. https://doi.org/10.1016/J.CATENA.2019.104223.
BOUSKILL, K. E., DANZ, M., MEREDITH, L. S., CHEN, C., CHANG, J., BAXI, S. M., HUYNH, D., AL-IBRAHIM, H., MOTALA, A., LARKIN, J., AKINNIRANYE, O., & HEMPEL, S. 2022. Burnout Definition, Prevalence, Risk Factors, Prevention, and Interventions Literature Reviews Research Report. www.rand.org/about/principles.
DRITSAS, E., & TRIGKA, M. 2022. Stroke Risk Prediction with Machine Learning Techniques. Sensors, 22(13). https://doi.org/10.3390/s22134670.
EDÚ‐VALSANIA, S., LAGUÍA, A., & MORIANO, J. A. 2022. Burnout: A Review of Theory and Measurement. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 3). MDPI. https://doi.org/10.3390/ijerph19031780.
G, A., GANESH, B., GANESH, A., SRINIVAS, C., DHANRAJ, & MENSINKAL, K. 2022. Logistic regression technique for prediction of cardiovascular disease. Global Transitions Proceedings, 3(1), 127–130. https://doi.org/10.1016/j.gltp.2022.04.008.
GUSEVA CANU, I., MARCA, S. C., DELL’ORO, F., BALÁZS, Á., BERGAMASCHI, E., BESSE, C., BIANCHI, R., BISLIMOVSKA, J., BJELAJAC, A. K., BUGGE, M., BUSNEAG, C. I., ÇAĞLAYAN, Ç., CERNITANU, M., PEREIRA, C. C., HAFNER, N. D., DROZ, N., EGLITE, M., GODDERIS, L., GÜNDEL, H., … WAHLEN, A. 2021. Harmonized definition of occupational burnout: A systematic review, semantic analysis, and Delphi consensus in 29 countries. Scandinavian Journal of Work, Environment and Health, 47(2), 95–107. https://doi.org/10.5271/sjweh.3935.
JAIN, H., KHUNTETA, A., & SRIVASTAVA, S. 2020. Churn Prediction in Telecommunication using Logistic Regression and Logit Boost. Procedia Computer Science, 167, 101–112. https://doi.org/10.1016/j.procs.2020.03.187.
JOSEPH, V. R. 2022. Optimal ratio for data splitting. Statistical Analysis and Data Mining, 15(4), 531–538. https://doi.org/10.1002/sam.11583.
KIM, H. D., PARK, S. G., KIM, W. H., MIN, K. B., MIN, J. Y., & HWANG, S. H. 2021. Development of Korean Version Burnout Syndrome Scale (KBOSS) Using WHO’s Definition of Burnout Syndrome. Safety and Health at Work, 12(4), 522–529. https://doi.org/10.1016/j.shaw.2021.08.001.
LIN, C. Y., ALIMORADI, Z., GRIFFITHS, M. D., & PAKPOUR, A. H. 2022. Psychometric properties of the Maslach Burnout Inventory for Medical Personnel (MBI-HSS-MP). Heliyon, 8(2). https://doi.org/10.1016/j.heliyon.2022.e08868.
MASLACH, C., & LEITER, M. P. 2021. How to Measure Burnout Accurately and Ethically.
RYBINSKA, Y., LOSHENKO, O., KYRYLENKO, T., KONDRATIEVA, V., SERBOVA, O., & STEBAIEVA, O. 2022. Comprehensive Psychological Analysis of The Features of Emotional Burnout Among IT Specialists: The Ukrainian Labor Market. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 13(2), 273–289. https://doi.org/10.18662/brain/13.2/343.
SAKINAH, N., BADRIYAH, T., SYARIF, I., & KORESPONDENSI, P. 2020. Analisis Kinerja Algoritma Mesin Pembelajaran Untuk Klasifikasi Penyakit Stroke Menggunakan Citra Ct Scan Performance Analysis Machine Learning Algorithms For Classification Of Stroke Using Ct Scan Images. https://doi.org/10.25126/jtiik.202073482.
SHALTOUT, A. E., MOHAMED, M. A., IBRAHIM, N. M., & ELDAHSHAN, N. A. 2023. Prevalence of Burnout Syndrome among Working Physicians in Family Health Centres and Units in Port Said Governorate. Asian Journal of Medicine and Health, 21(9), 25–43. https://doi.org/10.9734/ajmah/2023/v21i9853.
SHOMAN, Y., MARCA, S. C., BIANCHI, R., GODDERIS, L., VAN DER MOLEN, H. F., & GUSEVA CANU, I. 2021. Psychometric properties of burnout measures: A systematic review. In Epidemiology and Psychiatric Sciences. Cambridge University Press. https://doi.org/10.1017/S2045796020001134.
TKACHENKO, K., & ANDRUSHCHENKO, M. 2020. How to prevent emotional burnout for programmers.
TULILI, T. R., CAPILUPPI, A., & RASTOGI, A. 2023. Burnout in software engineering: A systematic mapping study. In Information and Software Technology (Vol. 155). Elsevier B.V. https://doi.org/10.1016/j.infsof.2022.107116.
VENKATESH, V., THONG, J. Y. L., CHAN, F. K. Y., HOEHLE, H., & SPOHRER, K. 2020. How agile software development methods reduce work exhaustion: Insights on role perceptions and organizational skills. Information Systems Journal, 30(4), 733–761. https://doi.org/10.1111/isj.12282.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).