Peningkatan Peforma Deteksi Serangan menggunakan Metode PCA dan Forest
DOI:
https://doi.org/10.25126/jtiik.20241127678Abstrak
Keamanan jaringan menjadi hal yang sangat penting dalam menghadapi ancaman serangan yang semakin kompleks dan canggih. Deteksi serangan dalam jaringan dapat membantu mengidentifikasi aktivitas mencurigakan yang mengindikasikan upaya penetrasi atau serangan oleh pihak yang tidak berwenang. Dalam upaya untuk meningkatkan performa deteksi serangan pada jaringan IoT perlu adanaya penerapan sebuah metode untuk mendeteksi sebuah ancaman . Metode Random Forest adalah algoritma pembelajaran mesin yang memanfaatkan ansambel pohon keputusan. Ansambel tersebut terdiri dari beberapa pohon keputusan independen yang digunakan untuk mengklasifikasikan data. Salah satu karakteristik dari metode Random Forest adalah kemampuannya dalam mengatasi masalah overfitting dan kualitas prediksi yang baik. Principal Component Analysis (PCA) adalah teknik statistik yang digunakan untuk mengurangi dimensi data dengan memproyeksikannya ke ruang fitur yang lebih rendah. Hal ini membantu menghilangkan korelasi antar fitur dan mengidentifikasi fitur-fitur penting yang dapat meningkatkan pemisahan antara serangan dan lalu lintas normal. Dalam penelitian ini akan diujikan dengan dataset CIC IOT 2023 yang terdiri dari beberapa tipe serangan yaitu DDoS, DoS, Recon, Web-based, Brute Force, Spoofing, dan Mirai. Pengujian model terdiri dari 4 fitur yaitu 5,8,10 dan 47. Hasil deteksi menunjukkan hasil yang memuaskan dengan meningkatkan kinerja dalam mendeteksi serangan hingga mencapai 99,2%
Abstract
Network security has become increasingly critical in the face of complex and sophisticated threat attacks. Detecting intrusions within a network can aid in identifying suspicious activities indicative of unauthorized penetration attempts or attacks. To enhance intrusion detection performance, the implementation of a method for threat detection is necessary. The Random Forest method, an ensemble machine learning algorithm that leverages multiple independent decision trees, is employed in this study. This method effectively addresses overfitting issues and demonstrates good predictive quality. Principal Component Analysis (PCA), a statistical technique for dimensionality reduction, is utilized to project data into a lower-dimensional feature space. By eliminating correlations between features and identifying important ones, PCA enhances the separation between attacks and normal traffic. This research utilizes the CIC IOT 2023 dataset, encompassing various types of attacks such as DDoS, DoS, Recon, Web-based, Brute Force, Spoofing, dan Mirai. The model testing phase incorporates 4 features: 5, 8, 10, and 47. The detection results indicate a remarkable performance improvement in identifying attacks, achieving an accuracy rate of 99.2%.
Downloads
Referensi
ADI, F., ANGGI, R., PUJI, D. AND KARTIKADARMA, E., 2023. Optimasi Algoritma Random Forest menggunakan Principal Component Analysis untuk Deteksi Malware. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(3), pp.217–223.
ATIMI, R.L. AND ENDA ESYUDHA PRATAMA, 2022. Implementasi Model Klasifikasi Sentimen Pada Review Produk Lazada Indonesia. Jurnal Sains dan Informatika, 8(1), pp.88–96. https://doi.org/10.34128/jsi.v8i1.41.
CHEN, M.M. AND CHEN, M.C., 2020. Modeling road accident severity with comparisons of logistic regression, decision tree and random forest. Information (Switzerland), 11(5). https://doi.org/10.3390/INFO11050270.
JIN, D., LU, Y., QIN, J., CHENG, Z. AND MAO, Z., 2020. SwiftIDS: Real-time intrusion detection system based on LightGBM and parallel intrusion detection mechanism. Computers and Security, [online] 97, p.101984. https://doi.org/10.1016/j.cose.2020.101984.
JMILA, H. AND KHEDHER, M.I., 2022. Adversarial machine learning for network intrusion detection: A comparative study. Computer Networks, [online] 214(May), p.109073. https://doi.org/10.1016/j.comnet.2022.109073.
KHAN, M.A., 2021. HCRNNIDS : Hybrid Convolutional Recurrent Neural. Multidisciplinary Digital Publishing Institute, 8(834).
LEE, J., PAK, J.G. AND LEE, M., 2020. Network Intrusion Detection System using Feature Extraction based on Deep Sparse Autoencoder. International Conference on ICT Convergence, 2020-October, pp.1282–1287. https://doi.org/10.1109/ICTC49870.2020.9289253.
NETO, E.C.P., DADKHAH, S., FERREIRA, R., ZOHOURIAN, A., LU, R. AND GHORBANI, A.A., 2023. CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment. Sensors, 23(13), p.5941. https://doi.org/10.3390/s23135941.
NUGRAHA, A. AND RIJATI, N., 2015. Penerapan Metode Principal Component Analysis (PCA) Untuk Deteksi Anomali Pada Jaringan Peer-To-Peer (P2P) Botnet. Techno.COM, 14(3), pp.212–217.
OSHIRO, T.M., PEREZ, P.S. AND BARANAUSKAS, J.A., 2012. How many trees in a random forest? Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7376 LNAI, pp.154–168. https://doi.org/10.1007/978-3-642-31537-4_13.
SHARIPUDDIN, PURNAMA, B., KURNIABUDI, WINANTO, E.A., STIAWAN, D., HANAPI, D., IDRIS, M.Y. BIN AND BUDIARTO, R., 2020. Features extraction on iot intrusion detection system using principal components analysis (Pca). International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2020-Octob, pp.114–118. https://doi.org/10.23919/EECSI50503.2020.9251292.
SHARIPUDDIN, WINANTO, E.A., MOHTAR, Z.Z., KURNIABUDI, WIJAYA, I.S. AND SANDRA, D., 2023. Improvement detection system on complex network using hybrid deep belief network and selection features. Indonesian Journal of Electrical Engineering and Computer Science, 31(1), pp.470–479. https://doi.org/10.11591/ijeecs.v31.i1.pp470-479.
SUDIYARNO, R., SETYANTO, A. AND LUTHFI, E.T., 2020. Peningkatan Performa Pendeteksian Anomali Menggunakan Ensemble Learning dan Feature Selection Anomaly Detection Performance Improvement Using Ensemble Learning and Feature Selection. Citec Journal, 7(1), pp.1–9.
SUMAIYA THASEEN, I., SAIRA BANU, J., LAVANYA, K., RUKUNUDDIN GHALIB, M. AND ABHISHEK, K., 2021. An integrated intrusion detection system using correlation-based attribute selection and artificial neural network. Transactions on Emerging Telecommunications Technologies, 32(2), pp.1–15. https://doi.org/10.1002/ett.4014.
WANLI SITORUS, Y., SUKARNO, P. AND MANDALA, S., 2021. Analisis Deteksi Malware Android menggunakan metode Support Vector Machine & Random Forest. e-Proceeding of Engineering, 8(6), pp.12500–12518.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).