Deteksi Transaksi Fraud Kartu Kredit Menggunakan Oversampling ADASYN dan Seleksi Fitur SVM-RFECV
DOI:
https://doi.org/10.25126/jtiik.20241117640Kata Kunci:
kartu kredit, deteksi fraud, machine learning, data tidak seimbang, seleksi fiturAbstrak
Perkembangan kejahatan transaksi fraud kartu kredit memberikan dampak kerugian finansial bagi pemegang kartu. Pengembangan model deteksi transaksi fraud menggunakan machine learning telah dilakukan, namun memiliki beberapa tantangan meliputi ketidakseimbangan data serta dimensi dataset yang besar. Penelitian ini mengusulkan pendekatan pengembangan dengan seleksi fitur menggunakan SVM-RFECV dan metode oversampling dengan ADASYN. Pendekatan ini diharapkan mampu mengatasi permasalahan dimensi data serta ketidakseimbangan data yang terjadi. Seleksi fitur dengan SVM-RFECV menghasilkan variabel optimal pada rasio data latih 70% sejumlah 390 variabel, rasio data latih 80% sejumlah 400 variabel dan rasio data latih 90% sejumlah 390 variabel. Metode ADASYN telah memperbaiki ketidakseimbangan data dengan menghasilkan data sintetis berdasarkan rasio oversampling meliputi 100%, 50% dan 25%. Model yang menggunakan data hasil oversampling mengalami peningkatan kinerja AUC dan recall. Kinerja AUC tertinggi dihasilkan sejumlah 88,08% pada data latih 70%, oversampling 100% dan algoritma LGBM. Sedangkan, kinerja recall tertinggi sejumlah 83,08% dihasilkan saat menggunakan data latih 70%, oversampling 100% dengan algoritma AdaBoost. Berdasarkan pembahasan ini, maka dapat disimpulkan bahwa penggunaan oversampling dengan ADASYN dan seleksi fitur SVM-RFECV dapat dipertimbangkan untuk meningkatkan kinerja AUC dan recall.
Downloads
Referensi
AHAMMAD, J., HOSSAIN, N. AND ALAM, M.S., 2020. Credit Card Fraud Detection using Data Pre-processing on Imbalanced Data - both Oversampling and Undersampling. In: Proceedings of the International Conference on Computing Advancements. New York, NY, USA: ACM. pp.1–4. https://doi.org/10.1145/3377049.3377113.
ALAMRI, M. AND YKHLEF, M., 2022. Survey of Credit Card Anomaly and Fraud Detection Using Sampling Techniques. Electronics, 11(23), p.4003. https://doi.org/10.3390/electronics11234003.
ALFAIZ, N.S. AND FATI, S.M., 2022. Enhanced Credit Card Fraud Detection Model Using Machine Learning. Electronics, 11(4), p.662. https://doi.org/10.3390/electronics11040662.
DILEEP, M.R., NAVANEETH, A. V AND ABHISHEK, M., 2021. A Novel Approach for Credit Card Fraud Detection using Decision Tree and Random Forest Algorithms. In: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). IEEE. pp.1025–1028. https://doi.org/10.1109/ICICV50876.2021.9388431.
DUBEY, S.C., MUNDHE, K.S. AND KADAM, A.A., 2020. Credit Card Fraud Detection using Artificial Neural Network and BackPropagation. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE. pp.268–273. https://doi.org/10.1109/ICICCS48265.2020.9120957.
EUROPEAN CENTRAL BANK, 2021. Seventh report on card fraud.
FEDERAL TRADE COMMISSION, 2022. Consumer Sentinel Network Data Book 2021. Washington, DC.
MADHURYA, M.J., GURURAJ, H.L., SOUNDARYA, B.C., VIDYASHREE, K.P. AND RAJENDRA, A.B., 2022. Exploratory analysis of credit card fraud detection using machine learning techniques. Global Transitions Proceedings, 3(1), pp.31–37. https://doi.org/10.1016/j.gltp.2022.04.006.
MALIK, E.F., KHAW, K.W., BELATON, B., WONG, W.P. AND CHEW, X., 2022. Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture. Mathematics, 10(9), p.1480. https://doi.org/10.3390/math10091480.
MQADI, N.M., NAICKER, N. AND ADELIYI, T., 2021. Solving Misclassification of the Credit Card Imbalance Problem Using Near Miss. Mathematical Problems in Engineering, 2021, pp.1–16. https://doi.org/10.1155/2021/7194728.
NUNES, A., ARDAU, R., BERGHÖFER, A., BOCCHETTA, A., CHILLOTTI, C., DEIANA, V., GARNHAM, J., GROF, E., HAJEK, T., MANCHIA, M., MÜLLER‐OERLINGHAUSEN, B., PINNA, M., PISANU, C., O’DONOVAN, C., SEVERINO, G., SLANEY, C., SUWALSKA, A., ZVOLSKY, P., CERVANTES, P., ZOMPO, M., GROF, P., RYBAKOWSKI, J., TONDO, L., TRAPPENBERG, T. AND ALDA, M., 2020. Prediction of lithium response using clinical data. Acta Psychiatrica Scandinavica, 141(2), pp.131–141. https://doi.org/10.1111/acps.13122.
RANDHAWA, K., LOO, C.K., SEERA, M., LIM, C.P. AND NANDI, A.K., 2018. Credit Card Fraud Detection Using AdaBoost and Majority Voting. IEEE Access, 6, pp.14277–14284. https://doi.org/10.1109/ACCESS.2018.2806420.
SUMANTH, C.H., KALYAN, P.P., RAVI, B. AND BALASUBRAMANI., S., 2022. Analysis of Credit Card Fraud Detection using Machine Learning Techniques. In: 2022 7th International Conference on Communication and Electronics Systems (ICCES). IEEE. pp.1140–1144. https://doi.org/10.1109/ICCES54183.2022.9835751.
SWANA, E.F., DOORSAMY, W. AND BOKORO, P., 2022. Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset. Sensors, 22(9), p.3246. https://doi.org/10.3390/s22093246.
TAHA, A.A. AND MALEBARY, S.J., 2020. An Intelligent Approach to Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Machine. IEEE Access, 8, pp.25579–25587. https://doi.org/10.1109/ACCESS.2020.2971354.
TIAN, S., LI, J., ZHANG, J. AND LI, C., 2023. STLRF‐Stack: A fault prediction model for pure electric vehicles based on a high dimensional imbalanced dataset. IET Intelligent Transport Systems, 17(2), pp.400–417. https://doi.org/10.1049/itr2.12267.
ZHANG, A., YU, H., HUAN, Z., YANG, X., ZHENG, S. AND GAO, S., 2022. SMOTE-RkNN: A hybrid re-sampling method based on SMOTE and reverse k-nearest neighbors. Information Sciences, 595, pp.70–88. https://doi.org/10.1016/j.ins.2022.02.038.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).