Perbandingan Kinerja Metode Arima, Multi-Layer Perceptron, Dan Random Forest Dalam Peramalan Harga Logam Mulia Berjangka Yang Mengandung Pencilan
DOI:
https://doi.org/10.25126/jtiik.20241127392Abstrak
Akurasi peramalan sebagai tolok ukur kinerja metode deret waktu bergantung beberapa hal, antara lain karakteristik data, pemilihan metode, fluktuasi data, dan keberadaaan pencilan dalam data. Keberadaan pencilan tersebut sering kali tidak dapat dihindari sehingga dapat mengganggu akurasi peramalan. Mempertimbangkan hal tersebut dalam penelitian ini dibahas tentang perbandingan kinerja metode Autoregressive Integrated Moving Average (ARIMA), Multi-Layer Perceptron (MLP), dan Random Forest (RF) dalam peramalan data deret waktu yang mengandung pencilan, menggunakan studi kasus data harga logam mulia berjangka (emas, perak, dan platina) berdasarkan nilai Mean Absolute Percentage Error (MAPE). Ditunjukkan bahwa kinerja metode ARIMA dengan Interpolasi Linier mampu menekan pengaruh pencilan lebih baik dibanding metode ARIMA dengan Winsorized Mean dan ARIMA tanpa penanganan data pencilan dengan nilai MAPE rata-rata berturut-turut sebesar 10,67% dibanding 12,33% dan 11,79% ketika dievaluasi menggunakan data uji. Metode MLP memiliki kinerja yang tidak lebih baik dibanding ARIMA dengan Interpolasi Linier dengan nilai MAPE rata-rata sebesar 11,13% ketika dievaluasi menggunakan data uji. Secara keseluruhan kinerja terbaik dihasilkan oleh metode RF, dengan nilai MAPE rata-rata jauh lebih kecil dibanding metode lainnya, yakni 2,85% ketika dievaluasi menggunakan data uji. Dalam kajian ini disimpulkan Metode RF memiliki kinerja terbaik dibandingkan semua metode. Hal tersebut disebabkan metode RF menggunakan prinsip decision tree sehingga lebih robust terhadap kehadiran pencilan dalam data. Berdasarkan hasil penelitian, metode RF dapat menjadi opsi untuk pemodelan data deret waktu yang mengandung pencilan.
Abstract
Forecasting accuracy as a benchmark for the performance of time series methods depends on several things, including data characteristics, method selection, data fluctuations, and the existence of outliers in the data. The existence of these outliers is often unavoidable so it can interfere with the accuracy of forecasting. Considering this, this research discusses the comparison of the performance of the Autoregressive Integrated Moving Average (ARIMA), Multi-Layer Perceptron (MLP), and Random Forest (RF) methods in forecasting time series data containing outliers, using a case study of precious metal futures price data (gold, silver, and platinum) based on the Mean Absolute Percentage Error (MAPE) value. It is shown that the performance of the ARIMA method with Linear Interpolation is able to suppress the influence of outliers better than the ARIMA method with Winsorized Mean and ARIMA without handling outlier data with the average MAPE value was obtained respectively at 10.67% compared to 12.33% and 11.79% when evaluated using test data. The MLP method has no better performance than ARIMA with Linear Interpolation with an average MAPE value of 11.13% when evaluated using test data. Overall, the best performance was produced by the RF method, which had a much smaller average MAPE value than the other methods, namely 2.85% when evaluated using test data. In this study it appears that the RF method has the best performance compared to all methods. This is because the RF method is based on decision tree principle so it is more robust to the presence of outliers in the data. Based on the research results, the RF method can be an option for modeling time series data that contains outliers.
Downloads
Referensi
ABDELRHIM, M., ELSAYED, A., MOHAMED, M., & FAROUH, M., 2020. Investment Opportunities in The Time Of (COVID-19) Spread: The Case of Cryptocurrencies and Metals Markets. SSRN Electronic Journal, pp.1–19. https://doi.org/10.2139/ssrn.3640333.
AKPAN, E.A. dan MOFFAT, I.U., 2019. Modeling the Effects of Outliers on the Estimation of Linear Stochastic Time Series Model. International Journal of Analysis and Applications, 17(4), pp.530–547. https://doi.org/10.28924/2291-8639-17-2019-530.
APERGIS, N., 2016. Gold returns: Do business cycle asymmetries matter? Evidence from an international country sample. 57, pp.164–170. Doi: https://doi.org/10.1016/j.econmod.2016.04.020.
BARANOVA, V., SERGIENKO, O., STEPURINA, S., & LYASHENKO, V., 2020. Price Environment for Gold and Silver in the Context of the Development of COVID-19. Journal of Asian Multicultural Research for Economy and Management Study, 1(2), pp.25–32.
BIAŁKOWSKI, J., BOHL, M. T., STEPHAN, P. M., & WISNIEWSKI, T. P., 2015. The gold price in times of crisis. International Review of Financial Analysis, 41, pp.329–339. https://doi.org/10.1016/j.irfa.2014.07.00.
BLÁZQUEZ-GARCÍA, A., CONDE, A., MORI, U. dan LOZANO, J.A., 2021. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys, 54(3). https://doi.org/10.1145/3444690.
CHOI, B.J., HOSELTON, S., NJAU, G.N., IDAMAWATTA, I.G.C.G., CARSON, P. dan MCEVOY, J., 2023. Estimating the prevalence of COVID-19 cases through the analysis of SARS-CoV-2 RNA copies derived from wastewater samples from North Dakota. Global Epidemiology, [online] 6(October), p.100124. https://doi.org/10.1016/j.gloepi.2023.100124.
CRYER, J.D., & CHAN, K.S., 2008. Time Series Analysis with Applications in R (2nd ed.). New York: Springer.
FARADIBAH, A., WIDYAWATI, D., SYAHAR, A.U.T., JABIR, S.R., 2023. Comparison Analysis of Random Forest Classifier, Support Vector Machine, and Artificial Neural Network Performance in Multiclass Brain Tumor Classification. Indonesian Journal of Data and Science, 4(2), pp.54–63. https://doi.org/10.56705/ijodas.v4i2.73.
JIN, H., KIM, Y.G., JIN, Z., RUSHCHITC, A.A. dan AL-SHATI, A.S., 2022. Optimization and analysis of bioenergy production using machine learning modeling: Multi-layer perceptron, Gaussian processes regression, K-nearest neighbors, and Artificial neural network models. Energy Reports, [online] 8, pp.13979–13996. https://doi.org/10.1016/j.egyr.2022.10.334.
JOSSO, P., HALL, A., WILLIAMS, C., LE BAS, T., LUSTY, P. dan MURTON, B., 2023. Application of random-forest machine learning algorithm for mineral predictive mapping of Fe-Mn crusts in the World Ocean. Ore Geology Reviews, [online] 162(September), p.105671. https://doi.org/10.1016/j.oregeorev.2023.105671.
KOH, W.C., & BAFFES, J., 2020. Gold Shines Bright Throughout the COVID-19 Crisis. [online] Tersedia di: <https://blogs.worldbank.org/opendata/gold-shines-bright-throughout-covid-19-crisis> [Diakses 2 April 2023].
LAMOUCHI, R.A., & BADKOOK, R.O., 2020. Gold Prices Volatility among Major Events and During the Current COVID-19 Outbreak. Journal of Statistical and Econometric Methods, 9(4), pp.39– 52.
LEPOT, M., AUBIN, J.-B. dan CLEMENS, F., 2017. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water, [online] 9(10), p.796. https://doi.org/10.3390/w9100796.
LEYS, C., DELACRE, M., MORA, Y.L., LAKENS, D. dan LEY, C., 2019. How to classify, detect, and manage univariate and multivariate outliers, with emphasis on pre-registration. International Review of Social Psychology, 32(1). https://doi.org/10.5334/irsp.289.
LI, J., ZHENG, L., ZHU, Y. dan HE, J., 2021. Outlier Impact Characterization for Time Series Data. 35th AAAI Conference on Artificial Intelligence, AAAI 2021, 13A (Fox 1972), pp.11595–11603. https://doi.org/10.1609/aaai.v35i13.17379.
LÓPEZ-DE-LACALLE, J., 2016. tsoutliers R Package for Detection of Outliers in Time Series.
LUO, J. dan GONG, Y., 2023. Air pollutant prediction based on ARIMA-WOA-LSTM model. Atmospheric Pollution Research, [online] 14(6), p.101761. https://doi.org/10.1016/j.apr.2023.101761.
MAHIR, A.R., & AL-KHAZALEH, A.M.H., 2009. New method to estimate missing data by using the asymmetrical winsorized mean in a time series. Applied Mathematical Sciences (Ruse). 3.
MISRA, S. dan LI, H., 2019. Noninvasive fracture characterization based on the classification of sonic wave travel times. [online] Machine Learning for Subsurface Characterization. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817736-5.00009-0.
MONTGOMERY, D.C., JENNINGS C.L., KULAHCI M., 2015. Introduction to Time Series Analysis and Forecasting: Second Edition. New Jersey: Wiley.
SANDRI, M., ZUCCOLOTTO, P., 2006. Variable Selection Using Random Forest. Data Analysis, Classification and the Forward Search, pp.263–270. https://doi.org/10.1007/3-540-35978-8_30.
SEN, S., SUGIARTO, D., & ROCHMAN, A., 2020. Komparasi Metode Multilayer Perceptron (MLP) dan Long Short-Term Memory (LSTM) dalam Peramalan Harga Beras. ISSN 2085-4552.
SETIYONO, A.T., GHASSANI, H., & DEWI, S., 2022. Determinan Covid-19 Terhadap Harga Emas. 14(1). https://doi.org/10.33747.
SINGH, N. P., & SHARMA, S., 2018. Phase-wise analysis of dynamic relationship among gold, crude oil, US dollar and stock market. Journal of Advances in Management Research, 15(4), pp.480–499. https://doi.org/10.1108/JAMR-12-2017-0124.
SCHONLAU, M. dan ZOU, R.Y., 2020. The random forest algorithm for statistical learning. Stata Journal, 20(1), pp.3–29. https://doi.org/10.1177/1536867X2090968.
YUANDONG, S., KHASKHELI, A., RAZA, S.A., YOUSUFI, S.Q., 2022. How COVID-19 influences prices of oil and precious metals: Comparison between data extracted from online searching trends and actual events. International Journal of Forecasting, pp.231-240. https://doi.org/10.1016/j.resourpol.2022.102916.
YOUSEF, I. dan SHEHADEH, E., 2020. The Impact of COVID-19 on Gold Price Volatility. International Journal of Economics and Business Administration, 4(4), pp.353–364. https://doi.org/10.35808/ijeba/592.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).