Vision Transformer untuk Klasifikasi Kematangan Pisang

Penulis

  • Arya Pangestu Fakultas Informatika, Universitas Telkom, Bandung
  • Bedy Purnama Fakultas Informatika, Universitas Telkom, Bandung
  • Risnandar Risnandar Fakultas Informatika, Universitas Telkom, Bandung

DOI:

https://doi.org/10.25126/jtiik.20241117389

Kata Kunci:

klasifikasi, kematangan pisang, computer vision, vision transformer, pre-trained model, cross-dataset evaluation

Abstrak

Produksi pisang di Indonesia pada tahun 2022 mencapai 9,6 juta ton buah. Metode konvensional yang digunakan untuk menentukan tingkat kematangan pisang masih mengandalkan indera penglihatan manusia dengan memperhatikan perubahan warna kulit pisang. Namun, penentuan tingkat kematangan pisang dengan metode ini memiliki beberapa kekurangan, seperti waktu yang lama, penilaian yang bersifat subjektif dan dapat menghasilkan hasil yang berbeda-beda bagi setiap individu. Oleh karena itu, teknologi computer vision dapat menjadi solusi yang efektif dalam mengklasifikasikan kematangan buah pisang secara otomatis. Penelitian ini menggunakan metodologi Vision Transformer (ViT) untuk mengklasifikasikan tingkat kematangan pada buah pisang, dengan tingkatan yang dibagi menjadi empat kategori, yaitu mentah, setengah matang, matang, dan terlalu matang. Penelitian dilakukan dengan menggunakan lima model ViT yang sudah dilatih sebelumnya atau pre-trained, yaitu ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32, and ViT-H/14 pada ImageNet-21k dan ImageNet-1k. Kemudian, model ViT tersebut dievaluasi dan dibandingkan dengan model CNN. Evaluasi dilakukan menggunakan metode cross-dataset dengan 5.068 citra pisang yang berbeda dari dataset latih. Hasil evaluasi menunjukkan model ViTL/16-in21k memiliki akurasi tertinggi sebesar 91,61%. Model ViT menunjukkan kemampuan generalisasi yang lebih baik, sementara CNN memiliki ukuran model dan waktu pelatihan yang lebih efisien.

Downloads

Download data is not yet available.

Referensi

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. CoRR, abs/2010.11929. https://arxiv.org/abs/2010.11929

Eloise. (2023). Banana Ripeness Detection Dataset. Dalam Roboflow Universe. Roboflow. https://universe.roboflow.com/eloise-pextp/banana-ripeness-detection-o3uia

Falcomer, A. L., Riquette, R. F. R., De Lima, B. R., Ginani, V. C., & Zandonadi, R. P. (2019). Health Benefits of Green Banana Consumption: A Systematic Review. Nutrients, 11(6), 1222. https://doi.org/10.3390/nu11061222

Fracarolli, J. A., Adimari Pavarin, F. F., Castro, W., & Blasco, J. (2020). Computer vision applied to food and agricultural products. Revista Ciencia Agronomica, 51(5), 1–20. https://doi.org/10.5935/1806-6690.20200087

gbc. (2023). Banana ripeness Dataset. Dalam Roboflow Universe. Roboflow. https://universe.roboflow.com/gbc-wronj/banana-ripeness-acmx1

Gheflati, B., & Rivaz, H. (2022). Vision Transformers for Classification of Breast Ultrasound Images. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 480–483. https://doi.org/10.1109/EMBC48229.2022.9871809

Hadfi, I. H., & Mohd Yusoh, Z. I. (2018). Banana Ripeness Detection and Servings Recommendation System using Artificial Intelligence Techniques. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2–8), 83–87. https://jtec.utem.edu.my/jtec/article/view/4464

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. CoRR, abs/1512.03385. http://arxiv.org/abs/1512.03385

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V, & Adam, H. (2019). Searching for MobileNetV3. CoRR, abs/1905.02244. http://arxiv.org/abs/1905.02244

Huang, G., Liu, Z., & Weinberger, K. Q. (2016). Densely Connected Convolutional Networks. CoRR, abs/1608.06993. http://arxiv.org/abs/1608.06993

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. CoRR, abs/1602.07360. http://arxiv.org/abs/1602.07360

images.cv, I. (2022). Download Banana labeled image classifcation dataset labeled image dataset. Dalam images.cv. images.cv. https://images.cv/dataset/banana-image-classification-dataset

Indonesia, S. (2023). Statistical Yearbook of Indonesia 2023 (D. of Statistical Dissemination, Ed.). BPS-Statistics Indonesia. https://www.bps.go.id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. CoRR, abs/1404.5997. http://arxiv.org/abs/1404.5997

Luciano, N., de Freitas, E. D. G., Xavier, M. V., Gomes, D. G., & Neves, J. P. H. (2023). Banana ripeness dataset. Kaggle. https://www.kaggle.com/dsv/5791191

Mazen, F. M. A., & Nashat, A. A. (2019). Ripeness Classification of Bananas Using an Artificial Neural Network. Arabian Journal for Science and Engineering, 44(8), 6901–6910. https://doi.org/10.1007/s13369-018-03695-5

Mishra, R., Goyal, S., Choudhury, T., & Sarkar, T. (2022). Banana ripeness classification using transfer learning techniques. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), 1–6. https://doi.org/10.1109/IC3SIS54991.2022.9885244

Mohamedon, M. F., Rahman, F. A., Mohamad, S. Y., & Khalifa, O. O. (2021). Banana Ripeness Classification Using Computer Vision-based Mobile Application. 2021 8th International Conference on Computer and Communication Engineering (ICCCE), 335–338. https://doi.org/10.1109/ICCCE50029.2021.9467225

Murmu, S. B., & Mishra, H. N. (2018). Post-harvest shelf-life of banana and guava: Mechanisms of common degradation problems and emerging counteracting strategies. Innovative Food Science & Emerging Technologies, 49, 20–30. https://www.sciencedirect.com/science/article/pii/S146685641730454X

Rico-Fernández, M. P., Rios-Cabrera, R., Castelán, M., Guerrero-Reyes, H. I., & Juarez-Maldonado, A. (2019). A contextualized approach for segmentation of foliage in different crop species. Computers and Electronics in Agriculture, 156, 378–386. https://doi.org/10.1016/j.compag.2018.11.033

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation. CoRR, abs/1801.04381. http://arxiv.org/abs/1801.04381

Saragih, R. E., & Emanuel, A. W. R. (2021). Banana Ripeness Classification Based on Deep Learning using Convolutional Neural Network. 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), 85–89. https://doi.org/10.1109/EIConCIT50028.2021.9431928

Saranya, N., Srinivasan, K., & Kumar, S. K. P. (2022). Banana ripeness stage identification: a deep learning approach. Journal of Ambient Intelligence and Humanized Computing, 13(8), 4033–4039. https://doi.org/10.1007/s12652-021-03267-w

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. Dalam Y. Bengio & Y. LeCun (Ed.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1409.1556

Tanzi, L., Audisio, A., Cirrincione, G., Aprato, A., & Vezzetti, E. (2022). Vision Transformer for femur fracture classification. Injury, 53(7), 2625–2634. https://doi.org/https://doi.org/10.1016/j.injury.2022.04.013

Tri Judi Mulajati. (2022). fresh-raw-rotten-banana Dataset. Dalam Roboflow Universe. Roboflow. https://universe.roboflow.com/trijudimulajati-student-gunadarma-ac-id/fresh-raw-rotten-banana

Von Loesecke, H. W. (1950). Bananas: Chemistry, Physiology, Technology. Interscience Publishers.

Zhang, Y., Zhang, F., & Chen, N. (2022). Migratable urban street scene sensing method based on vision language pre-trained model. International Journal of Applied Earth Observation and Geoinformation, 113, 102989. https://www.sciencedirect.com/science/article/pii/S1569843222001807

Zheng, H., Wang, G., & Li, X. (2022). Identifying strawberry appearance quality by vision transformers and support vector machine. Journal of Food Process Engineering, 45(10), e14132. https://doi.org/https://doi.org/10.1111/jfpe.14132

Unduhan

Diterbitkan

29-02-2024

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Vision Transformer untuk Klasifikasi Kematangan Pisang. (2024). Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(1), 75-84. https://doi.org/10.25126/jtiik.20241117389