Pengaruh Klasifikasi Sentimen Pada Ulasan Produk Amazon Berbasis Rekayasa Fitur dan K-Nearest Negihbor
DOI:
https://doi.org/10.25126/jtiik.20241117376Kata Kunci:
Ulasan produk Amazon, analisis sentimen, Textblob Library, kombinasi fitur, K-Nearest NeighborAbstrak
Ulasan online menjadi faktor penting yang mendorong konsumen untuk membeli barang di e-commerce. Dalam e-commerce, ulasan pelanggan sebelumnya dapat membantu pembeli membuat keputusan yang lebih baik dengan memberikan informasi tentang kualitas produk, kekuatan dan kelemahan, perilaku penjual, harga, dan waktu pengiriman. Namun, keberadaan ulasan palsu menimbulkan tantangan dalam menilai sentimen yang diungkapkan oleh pelanggan asli secara benar. Dalam penelitian ini, berfokus pada analisis sentimen dan bertujuan untuk mengeksplorasi peran sentimen dalam ulasan produk Amazon. Penelitian ini menggunakan kombinasi fitur dari konten ulasan dengan menerapkan klasifikasi K-Nearest Neighbor untuk mengklasifikasikan polaritas sentimen ulasan secara akurat. Dalam mengekstrak skor polaritas dari ulasan, penelitian ini menggunakan pendekatan analisis sentimen berbasis leksikon yaitu Textblob Library dan menetapkan label sentimen dari ulasan produk. Hasil dari pemodelan yang diusulkan mencapai tingkat akurasi sebesar 83% yang menunjukkan keefektifan pemodelan yang diusulkan dalam analisis sentimen. Hasil dari penelitian ini dapat membantu konsumen dalam membuat keputusan pembelian dan membantu penjual dalam meningkatkan nilai produk dan layanan mereka berdasarkan feedback yang diberikan oleh pelanggan.
Downloads
Referensi
AKTER, M.T., BEGUM, M., & MUSTAFA, R., 2021. Bengali Sentiment Analysis of E-Commerce Product Reviews Using K-Nearest Neighbors. 2021 International Conference on Information And Communication Technology For Sustainable Development (ICICT4SD), [online] pp. 40-44. Available at : <https://ieeexplore.ieee.org/document/9396910>.
ALAMI, N., MEKNASSI, M., EN-NAHNAHI, N., ADLOUNI, Y.E., & AMMOR, O., 2021. Unsupervised Neural Networks For Automatic Arabic Text Summarization Using Document Clustering And Topic Modelling. Expert Systems With Applications, [online] 172, p. 114652. Available at: <https://doi.org/10.1016/j.eswa.2021.114652>.
ALJEEDANI, W., RUSTAM, F., MKAOUER, M.W., GHALLAB, A., RUPAPARA, V., WASHINGTON, P.B., LEE, E., & ASHRAF, I., 2022. Sentiment Analysis on Twitter Data Integrating Textblob And Deep Learning Models: The Case of US Airline Industry. Knowledge-Based Systems, [online] 255, p.109780. Available at: <https://doi.org/10.1016/j.knosys.2022.109780>.
ALSUBARI, S.N., DESMUKH, S.N., AL-ADHAILEH, M.H., ALSAADE, F.W., & ALDHYANI, T.H.H., 2021. Development of Integrated Neural Network Model For Identification of Fake Reviews in E-Commerce Using Multidomain Datasets. Applied Bionics And Biomechanics, [online] 2021, pp. 1-11. Available at : <https://doi.org/10.1155/2021/5522574>.
BIRIM, S.O., KAZANCOGLU, I., MANGLA, S.K., KAHRAMAN, A., KUMAR, S., & KAZANCOGLU, Y., 2022. Detecting Fake Review Through Topic Modelling. Journal of Bussiness Research, [online] 149, pp. 884-900. Available at : <https://doi.org/10.1016/j.jbusres.2022.05.081>.
BONTA, V., KUMARESH, N., & JANARDHAN, N., 2019. A Comprehensive Study on Lexicon Based Approaches For Sentiment Analysis. Asian Journal of Computer Science And Technology, [online] 8, pp. 1-6. Available at : <https://www.researchgate.net/publication/333602124>.
CUNNINGHAM, P., dan DELANY, S.J., 2021. K-Nearest Neighbour Classifiers-A Tutorial. ACM Computing Surveys (CSUR), [online] 54(6), pp. 1-25. Available at: <https://dl.acm.org/doi/10.1145/3459665>.
DAIV, K., LACHAKE, M., JAGTAP, P., DHARIWAL, S., & GUTTE, P.V., 2020. An Approach To Detect Fake Reviews Based On Logistic Regression Using Review-Centric Features. International Research Journal of Engineering And Technology (IRJET), 07, pp. 2107-2112.
GHIASI, A., NG, C.T., & SHEIKH.A.H., 2022. Damage Detection of In-Service Steel Railway Bridges Using a Fine K-Nearest Neighbor Machine Learning Classifier. Structures, [online] 45, pp. 1920-1935. Available at: <https://doi.org/10.1016/j.istruc.2022.10.019>.
HAN, X., YANG, G., QU, S., ZHANG, G., CHI, M., 2019. A Weighted Algorithm Based on Physical Distance And Cosine Similarity For Indoor Localization. 2019 14th IEEE Conference on Industrial Electronics And Applications (ICIEA), [online] pp. 179-183. Available at: <https://ieeexplore.ieee.org/abstract/document/8833982>.
JUNIOR, G.A.D.O., JR, R.T.D.S., ALBUQUERQUER, R.D.O., & VILLALBA, L.J.G., 2021. Adversarial Attack on a Lexical Sentiment Analysis Classifier. Computer Communications, [online] 174, pp. 154-171. Available at: <https://doi.org/10.1016/j.comcom.2021.04.026>.
KAUR, S., KUMAR, P., & KUMARAGURU, P., 2020. Automating Fake News Detection System Using Multi-Level Voting Model. Soft Computing, 24, pp. 9049-9069.
KIANI, J., CAMP, C., & PEZESHK, S., 2019. On The Application of Machine Learning Techniques To Derive Seismic Fragility Curves. Computers And Structures, [online] 218, pp. 108-122. Available at: <https://doi.org/10.1016/j.compstruc.2019.03.004>.
KIM, J., dan LIM, C., 2021. Customer Complaints Monitoring With Customer Review Data Analytics: An Integrated Method of Sentiment And Statistical Process Control Analysis. Advanced Engineering Informatics, [online] 49, p. 101304. Available at : <https://doi.org/10.1016/j.aei.2021.101304>.
MUSTAQIM, T., UMAM, K., & MUSLIM, M.A., 2019. Twitter Text Mining For Sentiment Analysis on Government’s Response To Forest Fires With Vader Lexicon Polarity Detection And K-Nearest Neighbor Algorithm, Journal of Physics: Conference Series, [online] 1567, pp. 1-7. Available at: <https://iopscience.iop.org/article/10.1088/1742-6596/1567/3/032024>.
QORIB, M., OLADUNNI, T., DENIS, M., OSOSANYA, E., & COTAE, P., 2022. COVID-19 Vaccine Hesitancy: Text Mining, Sentiment Analysis And Machine Learning on COVID-19 Vaccination Twitter Dataset. Expert Systems With Applications. [online] 212, p. 118715. Available at: <https://doi.org/10.1016/j.eswa.2022.118715>.
RODRIGUES, V.F., POLICARPO, L.M., SILVEIRA, D.E.D., RIGHI, R.D.R., COSTA, C.A.D., BARBOSA, J.L.V., & ANTUNES, R.S., 2022. Fraud Detection And Prevention in E-Commerce: A Systematic Literature Review. Electronic Commerce Research And Applications, [online] 56, p.101207. Available at : <https://doi.org/10.1016/j.elerap.2022.101207>.
TANGMANEE, C., dan JONGTAVORNVITAYA. C., 2022. Visitors At Amazon.com: A Two-Level Exploration Into Their Browsing And Spending Behaviors. International Journal of E-Bussiness And E-Government Studies, 14, pp. 225-245.
WELLS, J.R., DANSKIN, G., & ELLSWORTH, G., 2018. Amazon,com 2018. Harvard Bussiness School. [online] Available at : <https://www.academia.edu/38615615/Amazon>.
XU, J., ZHANG, Y., & MIAO, D., 2020. Three-Way Confusion Matrix For Classification: A Measure Driven View. Information Sciences, [online] 507, pp. 772-794. Available at: < https://doi.org/10.1016/j.ins.2019.06.064>.
YANG, J.S., ZHAO, C.Y., YU, H.T., & CHEN, H.Y., 2020. Use GBDT To Predict The Stock (Akter et al., 2021)Market. Proceedings 2019 International Conference on Identification, Information And Knowledge in The Internet of Things (IIKI2019), [online] 174, pp. 161-171. Available at : <https://doi.org/10.1016/j.procs.2020.06.071>.
ZHENG, W., GAO, J., WU, X., LIU, F., XUN, Y., LIU, G., & CHEN, X., 2020. The Impact Factors on The Performance of Machine Learning-Based Vulnerability Detection: A Comparative Study. The Journal of Systems & Software, [online] 168, p. 110659. Available at: <https://doi.org/10.1016/j.jss.2020.110659>.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).