Penerapan Deep Convolutional Generative Adversarial Network Untuk Menciptakan Data Sintesis Perilaku Pengemudi Dalam Berkendara

Penulis

  • Michael Stephen Lui Universitas Brawijaya, Malang
  • Fitra Abdurrachman Bachtiar Universitas Brawijaya, Malang
  • Novanto Yudistira Universitas Brawijaya, Malang

DOI:

https://doi.org/10.25126/jtiik.20231056978

Abstrak

Kecelakaan kendaraan adalah salah satu penyebab kematian tertinggi di Indonesia. Salah satu solusi untuk mencegah kecelakaan adalah dengan menggunakan sensor eksternal untuk mendeteksi kondisi jalan. Namun, penyebab utama kecelakaan adalah kelalaian pengemudi ketika mengemudi yang tidak dapat terdeteksi oleh sensor eksternal. Sensor visual dapat mendeteksi perilaku pengemudi di dalam kendaraan. Penggunaan sensor visual memiliki performa yang lebih baik ketika menggunakan metode deep learning. Salah satu metode untuk meningkatkan performa metode deep learning adalah dengan menggunakan data sintesis hasil model generatif sebagai tambahan data. Deep Convolutional Generative Adversarial Network (DCGAN) adalah salah satu model generatif yang menggunakan lapisan konvolusi. DCGAN terdiri dari dua neural network bernama generator dan discriminator yang membentuk hubungan ­zero-sum game. Generator menerima masukan berupa gambar asli dengan tambahan noise sebagai input proses latih secara unsupervised, menghasilkan gambar sintesis, sedangkan discriminator menerima gambar asli dan gambar sintesis sebagai input dan menghitung keaslian gambar yang selanjutnya digunakan sebagai nilai loss dengan fungsi loss Binary Cross Entropy. Arsitektur DCGAN terdiri dari beberapa transposed convolutional layer dengan batch normalization dan fungsi aktivasi ReLU dan fungsi aktivasi Tanh sebagai output layer pada generator dan beberapa convolutional layer dengan batch normalization dan fungsi aktivasi Leaky ReLU dan fungsi aktivasi Sigmoid sebagai output layer pada discriminator. Dataset yang digunakan pada penelitian ini adalah dataset ISDDS perilaku umum pengemudi yang dikumpulan pada skenario simulasi dengan jumlah dua ribu gambar. Hasil pengujian menemukan bahwa nilai hyperparameter dapat menghasilkan gambar sintesis perilaku pengemudi di dalam kendaraan yang baik dengan nilai FID sebesar 274,16 pada learning rate discriminator pada 0,0001, β1 discriminator pada 0,8005, learning rate generator pada 0,0017, β1 generator pada 0,1138 selama 43 epoch dengan menggunakan optimizer Adam pada generator dan discriminator.

 

Abstract

Vehicle crash is one of the leading causes of death in Indonesia. One of the solutions to prevent vehicle crash is by using external sensor to detect road condition. Yet, most crash happened because of driver distraction, which is hard to detect using external sensor. Visual sensor can be used to detect driver activity inside vehicle. Visual sensor that uses deep learning method performs well. One way to increase deep learning method performance is by using additional synthesis data made by generative model. Deep Convolutional Generative Adversarial Network (DCGAN) is a generative model that uses convolution layer. DCGAN consists of two neural networks titled generator and discriminator which create zero-sum game relationship. Generator will receive real image with added noise as input of unsupervised training process, creating synthetic image, while discriminator will receive real image and synthetic image as input and calculate the realness of those image which will be used as loss value with Binary Cross Entropy loss function. The Architecture of DCGAN is composed of multiple transposed convolutional layers with batch normalization and activation function ReLU and activation function Tanh as output layer in generator and multiple convolutional layers with batch normalization and activation function Leaky ReLU and activation function Sigmoid as output layer in discriminator. Dataset used in this research is primary dataset of common driver activity collected in simulation scenario with the size of two thousand images. Experiment result shows that DCGAN is able to create good image synthesis of driver activity inside vehicle with FID of 274,16 using hyperparameter consisting of learning rate discriminator at 0,0001, β1 discriminator at 0,8005, learning rate generator at 0,0017, β1 generator at 0,1138 for 43 epochs by using Adam optimizer on generator dan discriminator.

Unduhan

Data unduhan tidak tersedia.

Referensi

RAHAYU, 2022. 2020-2021, Kerugian Materi akibat Kecelakaan Capai Rp 246 Miliar. https://money.kompas.com/read/2022/03/23/151100926/2020-2021-kerugian-materi-akibat-kecelakaan-capai-rp-246-miliar-

BAUTISTA, T., MATTHEW, J., KERDEGARI, H., PERALTA, L., & XOCHICALE, M., 2022. Empirical Study of Quality Image Assessment for Synthesis of Fetal Head Ultrasound Imaging with DCGANs. https://github.com/budai4medtech/

BEANLAND, V., FITZHARRIS, M., YOUNG, K. L., & LENNÉ, M. G., 2013. Driver inattention and driver distraction in serious casualty crashes: Data from the Australian National Crash In-depth Study. Accident Analysis & Prevention, 54, 99–107. https://doi.org/10.1016/J.AAP.2012.12.043

BERGSTRA, J., BARDENET, R., BENGIO, Y., & KÉGL, B., 2011. Algorithms for Hyper-Parameter Optimization. Advances in Neural Information Processing Systems 24.

BORJI, A., 2022. Pros and cons of GAN evaluation measures: New developments. Computer Vision and Image Understanding, 215. https://doi.org/10.1016/J.CVIU.2021.103329

DINGUS, T. A., GUO, F., LEE, S., ANTIN, J. F., PEREZ, M., BUCHANAN-KING, M., HANKEY, J., & DESIGNED, J. H., 2016. Driver crash risk factors and prevalence evaluation using naturalistic driving data. 113(10), 2636–2641. https://doi.org/10.15787/VTT1VC7C

GOODFELLOW, I., BENGIO, Y., & COURVILLE, A., 2018. Deep learning. MIT Press. https://books.google.com/books/about/Deep_Learning.html?id=omivDQAAQBAJ

HARI, C. V., & SANKARAN, P., 2021. Driver distraction analysis using face pose cues. Expert Systems with Applications, 179, 115036. https://doi.org/10.1016/J.ESWA.2021.115036

HU, Y., LU, M., & LU, X., 2020. Feature refinement for image-based driver action recognition via multi-scale attention convolutional neural network. Signal Processing: Image Communication, 81. https://doi.org/10.1016/J.IMAGE.2019.115697

KOAY, H. V., CHUAH, J. H., CHOW, C.-O., & CHANG, Y.-L., 2022. Detecting and recognizing driver distraction through various data modality using machine learning: A review, recent advances, simplified framework and open challenges (2014–2021). Engineering Applications of Artificial Intelligence, 115, 105309. https://doi.org/10.1016/J.ENGAPPAI.2022.105309

LU, Y., CHEN, D., OLANIYI, E., & HUANG, Y.. 2022. Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Computers and Electronics in Agriculture, 200, 107208. https://doi.org/10.1016/J.COMPAG.2022.107208

MCDONALD, A., CARNEY, C., & MCGEHEE, D. V., 2018. Title Vehicle Owners’ Experiences with and Reactions to Advanced Driver Assistance Systems. www.aaafoundation.org

NÉE, M., CONTRAND, B., ORRIOLS, L., GIL-JARDINÉ, C., GALÉRA, C., & LAGARDE, E., 2019. Road safety and distraction, results from a responsibility case-control study among a sample of road users interviewed at the emergency room. Accident Analysis & Prevention, 122, 19–24. https://doi.org/10.1016/J.AAP.2018.09.032

OMERUSTAOGLU, F., SAKAR, C. O., & KAR, G., 2020. Distracted driver detection by combining in-vehicle and image data using deep learning. Applied Soft Computing, 96, 106657. https://doi.org/10.1016/J.ASOC.2020.106657

RADFORD, A., METZ, L., & CHINTALA, S., 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings. https://doi.org/10.48550/arxiv.1511.06434

WAGNER, B., TAFFNER, F., KARACA, S., & KARGE, L., 2022. Vision Based Detection of Driver Cell Phone Usage and Food Consumption. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4257–4266. https://doi.org/10.1109/TITS.2020.3043145

WORLD HEALTH ORGANIZATION., 2018. Global status report on road safety 2018: Summary. https://www.who.int/publications/i/item/WHO-NMH-NVI-18.20

WU, Q., CHEN, Y., & MENG, J., 2020. Dcgan-based data augmentation for tomato leaf disease identification. IEEE Access, 8, 98716–98728. https://doi.org/10.1109/ACCESS.2020.2997001

ZHANG, C., LI, R., KIM, W., YOON, D., & PATRAS, P., 2020. Driver behavior recognition via interwoven deep convolutional neural nets with multi-stream inputs. IEEE Access, 8, 191138–191151. https://doi.org/10.1109/ACCESS.2020.3032344

ZHANG, Y. D., & SANGAIAH, A. K., 2022. Cognitive systems and signal processing in image processing. In Cognitive Systems and Signal Processing in Image Processing. Elsevier. https://doi.org/10.1016/C2020-0-02155-9

Unduhan

Diterbitkan

17-10-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Penerapan Deep Convolutional Generative Adversarial Network Untuk Menciptakan Data Sintesis Perilaku Pengemudi Dalam Berkendara. (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(5), 963-972. https://doi.org/10.25126/jtiik.20231056978