Clustering Gempabumi di Wilayah Regional VII Menggunakan Pendekatan DBSCAN

Penulis

  • Ihsan Bagus Fahad Arafat Universitas Islam Negeri Maulana Malik Ibrahim, Malang
  • Mokhamad Amin Hariyadi Universitas Islam Negeri Maulana Malik Ibrahim, Malang
  • Irwan Budi Santoso Universitas Islam Negeri Maulana Malik Ibrahim, Malang
  • Cahyo Crysdian Universitas Islam Negeri Maulana Malik Ibrahim, Malang

DOI:

https://doi.org/10.25126/jtiik.20241046918

Abstrak

Wilayah Regional VII meliputi Jawa Tengah, Yogyakarta, dan Jawa Timur merupakan wilayah tektonik yang aktif karena terletak di wilayah zona subduksi lempeng Indo-Australia dan Eurasia serta terdapat beberapa patahan aktif di daratan. Oleh karena itu, perlu dilakukan klasifikasi gempabumi untuk memetakan zona rawan gempabumi berdasarkan sumbernya di wilayah Regional VII berdasarkan kesamaan atribut salah satunya adalah berdasarkan karakteristik gempabumi dari sumber yang sama. Pada penelitian ini digunakan pendekatan algoritma Unsupervised Learning Clustering berbasis kepadatan yaitu, Density Based Spatial Clustering of Application with Noise atau DBSCAN, algoritma ini membutuhkan parameter input epsilon (ε) dan MinPts. Data yang digunakan pada penelitian ini adalah data gempabumi wilayah Regional VII tahun 2017 hingga 2021 yang diperoleh dari BMKG. Selanjutnya, proses clustering dilakukan dengan membagi data gempabumi berdasarkan periode yaitu periode tahunan dan periode lima tahun dengan tujuan untuk mengetahui pola cluster berdasarkan periode waktu. Hasil yang terbentuk selanjutnya dievaluasi menggunakan Silhouette Coefficient serta dibandingkan dengan peta Seismisitas Jawa yang telah ada dari katalog PuSGeN 2017. Hasil clustering menggunakan DBSCAN diperoleh jumlah cluster sebanyak 2 hingga 6 cluster dengan nilai Silhouette Coefficient terendah sebesar 0.270 untuk periode T5_2017-2021 dan tertinggi sebesar 0.499 untuk periode T1_2020.

 

Abstract

Regional VII area covering Central Java, Yogyakarta and East Java is an active tectonic region because it is located in the subduction zone of the Indo-Australian and Eurasian plates and there are several active faults on land. Therefore, it is necessary to classify earthquakes to map earthquake-prone zones based on their sources in Regional VII area based on the similarity of attibutes, based on the characteristics of earthquakes from the same source. In this study, a density-based Unsupervised Learning Clustering algorithm approach was used namely, Density Based Spatial Clustering of Application with Noise or DBSCAN, this algorithm requires the input parameters epsilon (ε) and MinPts. The data used in this study are earthquake data for Regional VII from 2017 to 2021 obtained from the BMKG. Then, the clustering process is carried out by dividing earthquake data based on the period, namely the annual period and the five-year period with the aim of knowing the pattern of cluster based on the time period. The results are then evaluated using the Sillhouette Coefficient and compared with the existing Java Seismicity map from the 2017 PuSGeN catalog. Clustering results using DBSCAN obtained a number of clusters of 2 to 6 clusters with the lowest Silhouette Coefficient value is 0.270 for the T5_2017-2021 period and the highest is 0.499 for the T1_2020 period.  


Downloads

Download data is not yet available.

Referensi

ALGORITHM, D., 2021. Journal of Physics and Its Applications Clustering of Seismicity in the Indonesian Region for the 2018-2020 Period using the. 4(1), 1–6.

ANSARI, A., NOORZAD, A., & ZAFARANI, H., 2009. Clustering analysis of the seismic catalog of Iran. Computers and Geosciences, 35(3), 475–486. https://doi.org/10.1016/j.cageo.2008.01.010

APRILIA PUSPITA, C., NUGRAHA, A. D., & PUSPITO, N. T., 2015. Earthquake hypocenter relocation using double difference method in East Java and surrounding areas. AIP Conference Proceedings, 1658, 2013–2016. https://doi.org/10.1063/1.4915029

CESCA, S., 2020. Seiscloud, a tool for density-based seismicity clustering and visualization. Journal of Seismology, 24(3), 443–457. https://doi.org/10.1007/s10950-020-09921-8

DASZYKOWSKI, M., & WALCZAK, B., 2009. Density-Based Clustering Methods. Comprehensive Chemometrics, 2, 635–654. https://doi.org/10.1016/B978-044452701-1.00067-3

DENG, D., 2020. DBSCAN Clustering Algorithm Based on Density. Proceedings - 2020 7th International Forum on Electrical Engineering and Automation, IFEEA 2020, 949–953. https://doi.org/10.1109/IFEEA51475.2020.00199

DIKE, H. U., ZHOU, Y., DEVEERASETTY, K. K., & WU, Q., 2019. Unsupervised Learning Based On Artificial Neural Network: A Review. 2018 IEEE International Conference on Cyborg and Bionic Systems, CBS 2018, 322–327. https://doi.org/10.1109/CBS.2018.8612259

GAO, X., & LI, G., 2020. A KNN Model Based on Manhattan Distance to Identify the SNARE Proteins. IEEE Access, 8, 112922–112931. https://doi.org/10.1109/ACCESS.2020.3003086

GUNAWAN, E., & WIDIYANTORO, S., 2019. Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. Journal of Geodynamics, 123(January), 49–54. https://doi.org/10.1016/j.jog.2019.01.004

HARINI, S., FAHMI, H., MULYANTO, A. D., & KHUDZAIFAH, M., 2020. The earthquake events and impacts mapping in Bali and Nusa Tenggara using a clustering method. IOP Conference Series: Earth and Environmental Science, 456(1). https://doi.org/10.1088/1755-1315/456/1/012087

JUFRIANSAH, A., PRAMUDYA, Y., KHUSNANI, A., & SAPUTRA, S., 2021. Analysis of Earthquake Activity in Indonesia by Clustering Method. Journal of Physics: Theories and Applications, 5(2), 92. https://doi.org/10.20961/jphystheor-appl.v5i2.59133

KARMENOVA, M., TLEBALDINOVA, A., KRAK, I., DENISSOVA, N., POPOVA, G., ZHANTASSOVA, Z., PONKINA, E., & GYÖRÖK, G., 2022. An Approach for Clustering of Seismic Events using Unsupervised Machine Learning. Acta Polytechnica Hungarica, 19(5), 7–22. https://doi.org/10.12700/APH.19.5.2022.5.1

KARRI, N. A., YOUSUF ANSARI, M., & PATHAK, A., 2019. Identification of seismic zones of India using DBSCAN. 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018, 65–69. https://doi.org/10.1109/GUCON.2018.8674964

KAZEMI-BEYDOKHTI, M., ALI ABBASPOUR, R., & MOJARAB, M., 2017. Spatio-Temporal Modeling of Seismic Provinces of Iran Using DBSCAN Algorithm. Pure and Applied Geophysics, 174(5), 1937–1952. https://doi.org/10.1007/s00024-017-1507-0

MOJARAB, M., MEMARIAN, H., ZARE, M., HOSSEIN MORSHEDY, A., & HOSSEIN PISHAHANG, M., 2014. Modeling of the seismotectonic provinces of Iran using the self-organizing map algorithm. Computers and Geosciences, 67, 150–162. https://doi.org/10.1016/j.cageo.2013.12.007

OMRAN, M. G. H., ENGELBRECHT, A. P., & SALMAN, A., 2007. An overview of clustering methods. Intelligent Data Analysis, 11(6), 583–605. https://doi.org/10.3233/ida-2007-11602

PUSTLITBANG PUPR., 2017. Buku Peta Gempa 2017.

RAHMAN, R. R. A., & WIJAYANTO, A. W., 2021. Pengelompokan Data Gempa Bumi Menggunakan Algoritma Dbscan. Jurnal Meteorologi Dan Geofisika, 22(1), 31. https://doi.org/10.31172/jmg.v22i1.738

SCHUBERT, E., SANDER, J., ESTER, M., KRIEGEL, H. P., & XU, X., 2017. DBSCAN Revisited, Revisited. ACM Transactions on Database Systems, 42(3), 1–21. https://doi.org/10.1145/3068335

Diterbitkan

30-08-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Clustering Gempabumi di Wilayah Regional VII Menggunakan Pendekatan DBSCAN. (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(4), 823-830. https://doi.org/10.25126/jtiik.20241046918