Clustering Gempabumi di Wilayah Regional VII Menggunakan Pendekatan DBSCAN
DOI:
https://doi.org/10.25126/jtiik.20241046918Abstrak
Wilayah Regional VII meliputi Jawa Tengah, Yogyakarta, dan Jawa Timur merupakan wilayah tektonik yang aktif karena terletak di wilayah zona subduksi lempeng Indo-Australia dan Eurasia serta terdapat beberapa patahan aktif di daratan. Oleh karena itu, perlu dilakukan klasifikasi gempabumi untuk memetakan zona rawan gempabumi berdasarkan sumbernya di wilayah Regional VII berdasarkan kesamaan atribut salah satunya adalah berdasarkan karakteristik gempabumi dari sumber yang sama. Pada penelitian ini digunakan pendekatan algoritma Unsupervised Learning Clustering berbasis kepadatan yaitu, Density Based Spatial Clustering of Application with Noise atau DBSCAN, algoritma ini membutuhkan parameter input epsilon (ε) dan MinPts. Data yang digunakan pada penelitian ini adalah data gempabumi wilayah Regional VII tahun 2017 hingga 2021 yang diperoleh dari BMKG. Selanjutnya, proses clustering dilakukan dengan membagi data gempabumi berdasarkan periode yaitu periode tahunan dan periode lima tahun dengan tujuan untuk mengetahui pola cluster berdasarkan periode waktu. Hasil yang terbentuk selanjutnya dievaluasi menggunakan Silhouette Coefficient serta dibandingkan dengan peta Seismisitas Jawa yang telah ada dari katalog PuSGeN 2017. Hasil clustering menggunakan DBSCAN diperoleh jumlah cluster sebanyak 2 hingga 6 cluster dengan nilai Silhouette Coefficient terendah sebesar 0.270 untuk periode T5_2017-2021 dan tertinggi sebesar 0.499 untuk periode T1_2020.
Abstract
Regional VII area covering Central Java, Yogyakarta and East Java is an active tectonic region because it is located in the subduction zone of the Indo-Australian and Eurasian plates and there are several active faults on land. Therefore, it is necessary to classify earthquakes to map earthquake-prone zones based on their sources in Regional VII area based on the similarity of attibutes, based on the characteristics of earthquakes from the same source. In this study, a density-based Unsupervised Learning Clustering algorithm approach was used namely, Density Based Spatial Clustering of Application with Noise or DBSCAN, this algorithm requires the input parameters epsilon (ε) and MinPts. The data used in this study are earthquake data for Regional VII from 2017 to 2021 obtained from the BMKG. Then, the clustering process is carried out by dividing earthquake data based on the period, namely the annual period and the five-year period with the aim of knowing the pattern of cluster based on the time period. The results are then evaluated using the Sillhouette Coefficient and compared with the existing Java Seismicity map from the 2017 PuSGeN catalog. Clustering results using DBSCAN obtained a number of clusters of 2 to 6 clusters with the lowest Silhouette Coefficient value is 0.270 for the T5_2017-2021 period and the highest is 0.499 for the T1_2020 period.
Downloads
Referensi
ALGORITHM, D., 2021. Journal of Physics and Its Applications Clustering of Seismicity in the Indonesian Region for the 2018-2020 Period using the. 4(1), 1–6.
ANSARI, A., NOORZAD, A., & ZAFARANI, H., 2009. Clustering analysis of the seismic catalog of Iran. Computers and Geosciences, 35(3), 475–486. https://doi.org/10.1016/j.cageo.2008.01.010
APRILIA PUSPITA, C., NUGRAHA, A. D., & PUSPITO, N. T., 2015. Earthquake hypocenter relocation using double difference method in East Java and surrounding areas. AIP Conference Proceedings, 1658, 2013–2016. https://doi.org/10.1063/1.4915029
CESCA, S., 2020. Seiscloud, a tool for density-based seismicity clustering and visualization. Journal of Seismology, 24(3), 443–457. https://doi.org/10.1007/s10950-020-09921-8
DASZYKOWSKI, M., & WALCZAK, B., 2009. Density-Based Clustering Methods. Comprehensive Chemometrics, 2, 635–654. https://doi.org/10.1016/B978-044452701-1.00067-3
DENG, D., 2020. DBSCAN Clustering Algorithm Based on Density. Proceedings - 2020 7th International Forum on Electrical Engineering and Automation, IFEEA 2020, 949–953. https://doi.org/10.1109/IFEEA51475.2020.00199
DIKE, H. U., ZHOU, Y., DEVEERASETTY, K. K., & WU, Q., 2019. Unsupervised Learning Based On Artificial Neural Network: A Review. 2018 IEEE International Conference on Cyborg and Bionic Systems, CBS 2018, 322–327. https://doi.org/10.1109/CBS.2018.8612259
GAO, X., & LI, G., 2020. A KNN Model Based on Manhattan Distance to Identify the SNARE Proteins. IEEE Access, 8, 112922–112931. https://doi.org/10.1109/ACCESS.2020.3003086
GUNAWAN, E., & WIDIYANTORO, S., 2019. Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. Journal of Geodynamics, 123(January), 49–54. https://doi.org/10.1016/j.jog.2019.01.004
HARINI, S., FAHMI, H., MULYANTO, A. D., & KHUDZAIFAH, M., 2020. The earthquake events and impacts mapping in Bali and Nusa Tenggara using a clustering method. IOP Conference Series: Earth and Environmental Science, 456(1). https://doi.org/10.1088/1755-1315/456/1/012087
JUFRIANSAH, A., PRAMUDYA, Y., KHUSNANI, A., & SAPUTRA, S., 2021. Analysis of Earthquake Activity in Indonesia by Clustering Method. Journal of Physics: Theories and Applications, 5(2), 92. https://doi.org/10.20961/jphystheor-appl.v5i2.59133
KARMENOVA, M., TLEBALDINOVA, A., KRAK, I., DENISSOVA, N., POPOVA, G., ZHANTASSOVA, Z., PONKINA, E., & GYÖRÖK, G., 2022. An Approach for Clustering of Seismic Events using Unsupervised Machine Learning. Acta Polytechnica Hungarica, 19(5), 7–22. https://doi.org/10.12700/APH.19.5.2022.5.1
KARRI, N. A., YOUSUF ANSARI, M., & PATHAK, A., 2019. Identification of seismic zones of India using DBSCAN. 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018, 65–69. https://doi.org/10.1109/GUCON.2018.8674964
KAZEMI-BEYDOKHTI, M., ALI ABBASPOUR, R., & MOJARAB, M., 2017. Spatio-Temporal Modeling of Seismic Provinces of Iran Using DBSCAN Algorithm. Pure and Applied Geophysics, 174(5), 1937–1952. https://doi.org/10.1007/s00024-017-1507-0
MOJARAB, M., MEMARIAN, H., ZARE, M., HOSSEIN MORSHEDY, A., & HOSSEIN PISHAHANG, M., 2014. Modeling of the seismotectonic provinces of Iran using the self-organizing map algorithm. Computers and Geosciences, 67, 150–162. https://doi.org/10.1016/j.cageo.2013.12.007
OMRAN, M. G. H., ENGELBRECHT, A. P., & SALMAN, A., 2007. An overview of clustering methods. Intelligent Data Analysis, 11(6), 583–605. https://doi.org/10.3233/ida-2007-11602
PUSTLITBANG PUPR., 2017. Buku Peta Gempa 2017.
RAHMAN, R. R. A., & WIJAYANTO, A. W., 2021. Pengelompokan Data Gempa Bumi Menggunakan Algoritma Dbscan. Jurnal Meteorologi Dan Geofisika, 22(1), 31. https://doi.org/10.31172/jmg.v22i1.738
SCHUBERT, E., SANDER, J., ESTER, M., KRIEGEL, H. P., & XU, X., 2017. DBSCAN Revisited, Revisited. ACM Transactions on Database Systems, 42(3), 1–21. https://doi.org/10.1145/3068335
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).