Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes

Penulis

  • Achmad Ghifari Universitas Brawijaya, Malang
  • Edita Rosana Widasari Universitas Brawijaya, Malang

DOI:

https://doi.org/10.25126/jtiik.20241046913

Abstrak

Tidur merupakan aktivitas dimana otak memberikan tubuh waktu istirahat secara total. Kualitas tidur penting untuk menjaga kondisi fisik maupun mental seseorang. Buruknya kualitas tidur disebabkan oleh gangguan tidur. Gangguan tidur yang paling umum terjadi adalah Sleep-disordered Breathing (SDB) atau Sleep Apnea, dimana penderitanya akan mengalami henti napas secara berulang saat tertidur. Sleep Apnea dikategorikan menjadi 2, yaitu Obstructive Sleep Apnea (OSA) dan Central Sleep Apnea (CSA). Diagnosis gangguan tidur dilakukan dengan Polysomnography yang cenderung mahal dan kurang nyaman. Hasil Polysomnography juga tidak dapat langsung digunakan oleh dokter untuk evaluasi lebih lanjut. Oleh karena itu, pada penelitian ini dibuat sistem pendeteksi gangguan tidur ke dalam kelas Normal, OSA, atau CSA menggunakan sinyal Electrocardiography (ECG) yang diakuisisi dengan teknik 3-lead placement. Sistem ini menggunakan sensor AD8232 dalam mengakuisisi sinyal jantung yang akan diproses oleh Arduino Mega 2560 untuk mendapatkan fitur High dan Low Frequency dari sinyal yang kemudian digunakan untuk klasifikasi. Sistem ini memiliki akurasi sebesar 85% dalam melakukan klasifikasi SDB menggunakan metode Naïve Bayes dengan rata-rata waktu komputasi sebesar 12ms. Sistem ini dapat digunakan di rumah karena bersifat portable dan datanya dapat langsung diunduh melalui websiteuntuk evaluasi dokter, sehingga membuat pasien merasa lebih nyaman dan efisien dalam melakukan diagnosis dini.

 

Abstract 

Sleep is an activity in which the brain gives the body total rest. The quality of sleep is important to maintain someone's physical and mental condition. Poor sleep quality is caused by sleep disorders. The most common sleep disorder is Sleep-Disordered Breathing (SDB) or Sleep Apnea, in which the sufferer will experience repeated pauses in breathing while asleep. Sleep Apnea is categorized into two, namely Obstructive Sleep Apnea (OSA) and Central Sleep Apnea (CSA). Sleep disorder diagnosis is done with Polysomnography which is expensive and uncomfortable. The result of Polysomnography can also not be directly used by doctors for further evaluation. Therefore, in this research, a system was created to detect sleep disorders into Normal, OSA, or CSA classes using Electrocardiography (ECG) signals acquired by the 3-lead placement technique. This system uses AD8232 sensors to acquire heart signals that are processed by Arduino Mega 2560 to obtain High and Low-frequency features of the signal, which are then used for classification. This system has an accuracy of 85% in classifying SDB using the Naive Bayes method with an average computation time of 12ms. This system can be used at home because it is portable and the data can be directly downloaded from the website for doctor evaluation, making the patient feel more comfortable and efficient in early diagnosis.

Downloads

Download data is not yet available.

Referensi

ABIDIN, R.J., Kaffah, F.M., Khaerunisa, P., Dauni, P. and Saputra, M.I.N., 2019. Sleep disorder diagnosis expert system using certainty factor method. Journal of Physics: Conference Series.

AZIZAH, N., Goejantoro, R. and Sifriyani, 2019. Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya.

BENJAFIELD, A. V., AYAS, N.T., EASTWOOD, P.R., HEINZER, R., IP, M.S.M., MORRELL, M.J., NUNEZ, C.M., PATEL, S.R., PENZEL, T., PÉPIN, J.L.D., PEPPARD, P.E., SINHA, S., TUFIK, S., VALENTINE, K. AND MALHOTRA, A., 2019. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. The Lancet Respiratory Medicine, 7(8), pp.687–698.

GRANDNER, M.A., 2017. Sleep, Health, and Society. Sleep Medicine Clinics.

HUNG, P.D., 2018. Detection of central sleep apnea based on a single-lead ECG. ACM International Conference Proceeding Series. Association for Computing Machinery. pp.78–83.

KOZA, I., MAULANA, R. AND FITRIYAH, H., 2021. Implementasi Sistem Pendeteksi Obstructive Sleep Apnea berdasarkan Parameter Interval QT dan Interval PR menggunakan Metode Naïve Bayes.

QUEENS HEALTH, 2018. 7 amazing things that happen to your body while you sleep | Queensland Health. Tersedia di: <https://www.health.qld.gov.au/news-events/news/7-amazing-things-that-happen-to-your-body-while-you-sleep> [Diakses 7 Agustus 2022].

SATEIA, M.J., 2014. International classification of sleep disorders-third edition highlights and modifications. Chest, 146(5), pp.1387–1394.

SIMONELLI, G., MARSHALL, N.S., GRILLAKIS, A., MILLER, C.B., HOYOS, C.M. AND GLOZIER, N., 2018. Sleep health epidemiology in low and middle-income countries: A systematic review, and meta-analysis of the prevalence of poor sleep quality and sleep duration.

SZOLLOSI, I., KRUM, H., KAYE, D. AND T. NAUGHTON, M., 2007. Sleep Apnea in Heart Failure Increases Heart Rate Variability and Sympathetic Dominance. 30(Sleep).

WELLS, M.E., 2018. Evolving Relationship Between Sleep-Disordered Breathing and Stroke - American College of Cardiology. Tersedia di: <https://www.acc.org/latest-in-cardiology/articles/2015/06/25/08/24/evolving-relationship-between-sleep-disordered-breathing-and-stroke> [Diakses 7 Agustus 2022].

Diterbitkan

30-08-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Sistem Pendeteksi Sleep-Disordered Breathing Berdasarkan High dan Low Frequency Menggunakan Metode Naïve Bayes. (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(4), 815-822. https://doi.org/10.25126/jtiik.20241046913