Prediksi Penuaan Wajah Manusia Berbasis Generative Adversarial Network
DOI:
https://doi.org/10.25126/jtiik.20241116870Kata Kunci:
CycleGAN, penuaan wajah, Frechet Inception Distance, data tidak berpasanganAbstrak
Karena struktur wajah manusia yang berbeda-beda, wajah merupakan salah satu ciri yang digunakan untuk mengidentifikasi seseorang. Wajah sering digunakan sebagai pengenal biometrik. Namun, seiring bertambahnya usia manusia, wajah mereka bisa berubah karena faktor lingkungan dan gaya hidup. Karena efek penuaan pada wajah, komputer tidak dapat mengenali kemiripan antara citra wajah dari orang yang sama pada usia yang berbeda. Penelitian pengenalan wajah biasanya menggunakan data berpasangan (paired data), yang sangat sulit didapat. Di sisi lain, volume data yang tidak berpasangan (unpaired data) sangat besar dan mudah diakses. Sebaliknya, keterbatasan data berpasangan memotivasi para peneliti untuk mengembangkan teknik sintesis citra yang tidak bergantung pada data berpasangan. Tanpa perlu data berpasangan, metode CycleGAN mampu menghasilkan citra sintetik yang lebih realistis dengan resolusi lebih tinggi. Hal itulah yang memotivasi penelitian ini dalam penggunaan data tidak berpasangan untuk memprediksi penuaan wajah manusia menggunakan CycleGAN. Pada penelitian ini, digunakan citra dari dataset UTKFace yang terdiri atas citra wajah berbagai usia. Untuk keperluan eksperimen, citra dari UTKFace dibagi ke dalam dua ranah, yaitu citra wajah usia muda dan citra wajah usia tua, untuk keperluan sistem penuaan wajah yang dibangun. Dengan demikian, citra wajah berusia muda tidak memiliki pasangan pada citra wajah usia tua (unpaired data). Dengan nilai Frechet Inception Distance (FID) = 2,24, hasil percobaan menunjukkan bahwa metode yang digunakan mampu mencapai kinerja yang sangat baik pada sistem penuaan wajah yang dibangun.
Downloads
Referensi
ANTIPOV, G., BACCOUCHE, M. & DUGELAY, J.L., 2017. Face Aging With Conditional Generative Adversarial Networks. Proceedings - International Conference on Image Processing, ICIP, [online] 2017-September, pp.2089–2093. https://doi.org/10.48550/arxiv.1702.01983.
FU, Y., GUO, G. & HUANG, T.S., 2010. Age synthesis and estimation via faces: a survey. IEEE transactions on pattern analysis and machine intelligence, [online] 32(11), pp.1955–1976. https://doi.org/10.1109/TPAMI.2010.36.
GOODFELLOW, I.J., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A. & BENGIO, Y., 2014. Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27.
HEUSEL, M., RAMSAUER, H., UNTERTHINER, T., NESSLER, B. & HOCHREITER, S., 2017. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Advances in Neural Information Processing Systems, [online] 2017-December, pp.6627–6638. https://doi.org/10.48550/arxiv.1706.08500.
ISOLA, P., ZHU, J.Y., ZHOU, T. & EFROS, A.A., 2016. Image-to-Image Translation with Conditional Adversarial Networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, [online] 2017-January, pp.5967–5976. https://doi.org/10.48550/arxiv.1611.07004.
KEMELMACHER-SHLIZERMAN, I., SUWAJANAKORN, S. & SEITZ, S.M., 2014. Illumination-aware age progression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3334–3341. https://doi.org/10.1109/CVPR.2014.426.
KINGMA, D.P. & BA, J.L., 2014. Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. [online] https://doi.org/10.48550/arxiv.1412.6980.
LIU, S., SUN, Y., ZHU, D., BAO, R., WANG, W., SHU, X. & YAN, S., 2017. Face aging with contextual generative adversarial nets. MM 2017 - Proceedings of the 2017 ACM Multimedia Conference, [online] pp.82–90. https://doi.org/10.1145/3123266.3123431.
RADFORD, A., METZ, L. & CHINTALA, S., 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings. [online] https://doi.org/10.48550/arxiv.1511.06434.
REED, S., AKATA, Z., YAN, X., LOGESWARAN, L., SCHIELE, B. & LEE, H., 2016. Generative Adversarial Text to Image Synthesis. 33rd International Conference on Machine Learning, ICML 2016, [online] 3, pp.1681–1690. https://doi.org/10.48550/arxiv.1605.05396.
REN, L., LIU, S., SUN, Y., DONG, J., LIU, L. & YAN, S., 2017. Time traveler: A real-time face aging system. MM 2017 - Proceedings of the 2017 ACM Multimedia Conference, [online] pp.1245–1246. https://doi.org/10.1145/3123266.3127922.
RONNEBERGER, O., FISCHER, P. & BROX, T., 2015. U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), [online] 9351, pp.234–241. https://doi.org/10.1007/978-3-319-24574-4_28/COVER.
SHENG, M., MA, Z., JIA, H., MAO, Q. & DONG, M., 2020. Face Aging with Conditional Generative Adversarial Network Guided by Ranking-CNN. Proceedings - 3rd International Conference on Multimedia Information Processing and Retrieval, MIPR 2020, pp.314–319. https://doi.org/10.1109/MIPR49039.2020.00071.
SHU, X., TANG, J., LAI, H., LIU, L. & YAN, S., 2015. Personalized Age Progression with Aging Dictionary. In: 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. pp.3970–3978. https://doi.org/10.1109/ICCV.2015.452.
SUN, H., XI, Q., FAN, R., -, AL, CHEN, X., YANG, B., LI, J., JIA, P., HUANG, Y., CAI, B., HAMZAH, N. & HAFIZHELMI KAMARU ZAMAN, F., 2020. Face Aging on Realistic Photo in Cross-Dataset Implementation. IOP Conference Series: Materials Science and Engineering, [online] 917(1), p.012080. https://doi.org/10.1088/1757-899X/917/1/012080.
TAIGMAN, Y., POLYAK, A. & WOLF, L., 2016. Unsupervised Cross-Domain Image Generation. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings. [online] https://doi.org/10.48550/arxiv.1611.02200.
ZHANG, Z., SONG, Y. & QI, H., 2017. Age Progression/Regression by Conditional Adversarial Autoencoder. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, [online] 2017-January, pp.4352–4360. https://doi.org/10.48550/arxiv.1702.08423.
ZHU, J.Y., KRÄHENBÜHL, P., SHECHTMAN, E. & EFROS, A.A., 2016. Generative visual manipulation on the natural image manifold. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), [online] 9909 LNCS, pp.597–613. https://doi.org/10.1007/978-3-319-46454-1_36/TABLES/1.
ZHU, J.Y., PARK, T., ISOLA, P. & EFROS, A.A., 2017. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. Proceedings of the IEEE International Conference on Computer Vision, [online] 2017-October, pp.2242–2251. https://doi.org/10.48550/arxiv.1703.10593.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).