Sistem Deteksi Myocardial Infarction Berdasarkan Pathological Q Waves Dan ST Segment Elevation Menggunakan Metode Support Vector Machine

Penulis

  • Ragil Hadi Prasetyo Universitas Brawijaya, Malang
  • Edita Rosana Widasari Universitas Brawijaya, Malang
  • Agung Setia Budi Universitas Brawijaya, Malang

DOI:

https://doi.org/10.25126/jtiik.2022976837

Abstrak

Jantung merupakan organ yang sangat penting bagi tubuh manusia karena jika mengalami gangguan pada jantung akan memberi dampak yang besar pada tubuh. Menurut World Health Organization (WHO) kematian yang disebabkan oleh penyakit jantung di dunia mencapai 17.9 juta setiap tahunnya. Salah satu gangguan pada jantung adalah Myocardial Infarction yaitu gangguan yang diakibatkan oleh penyumbatan darah menuju jantung. Salah satu cara untuk mengetahui seseorang menderita Myocardial Infarction yaitu dengan melakukan tes Electrocardiogram (ECG), tetapi untuk melakukan test ECG tersebut cukup mahal dan sulit dijangkau untuk beberapa orang. Penelitian ini melakukan deteksi Myocardial Infarction berdasarkan 2 kondisi sinyal abnormal yaitu Pathological Q Waves dan ST Segment Elevation. Kedua kondisi sinyal abnormal tersebut dapat digunakan untuk mendeteksi Myocardial Infarction. Penelitian ini menggunakan modul sensor AD8232 sebagai input untuk membaca aliran listrik pada jantung. Kemudian sinyal yang dibaca oleh sensor diproses di Arduino Uno dan dilakukan klasifikasi dan menampilkan hasilnya pada LCD 16x2 sebagai output. Penelitian ini melakukan pengujian modul sensor AD8232 dalam menghitung Beat per Minute (BPM) dan mendapatkan akurasi 99%. Klasifikasi yang digunakan yaitu Support Vector Machine yang mendapatkan akurasi 83.,30% dengan rata-rata waktu komputasi 31,20ms.


Abstract

Heart is a very important organ for the human body because if you experience a disorder of the heart it will have a big impact on the body. According to the World Health Organization (WHO), deaths caused by heart disease in the world reach 17.9 million each year. One of the disorders in the heart is Myocardial Infarction which is a disorder caused by blood blockage to the heart. One way to find out someone has Myocardial Infarction is to do an Electrocardiogram (ECG) test, but to do an ECG test is quite expensive and difficult to reach for some people. This study detected Myocardial Infarction based on 2 abnormal signal conditions, namely Pathological Q Waves and ST Segment Elevation. Both abnormal signal conditions can be used to detect Myocardial Infarction. This study used the AD8232 sensor module as an input to read the electricity flow in the heart. Then the signal read by the sensor is processed in the Arduino Uno and is classified and displays the result on a 16x2 LCD as an output. The study tested the AD8232 sensor module in calculating (Beat Per Minute)BPM and obtained 99% Accuracy. The classification used is the Support Vector Machine which gets an accuracy of 83.30% with an average computing time of 31.20ms.


Downloads

Download data is not yet available.

Referensi

BHARDWAJ, A.V. et al., 2018, April. Early diagnosis and automated analysis of Myocardial Infarction (STEMI) by detection of ST segment elevation using wavelet transform and feature extraction, Bangalore: IEEE.

DOHARE, A.K., KUMAR, V. and KUMAR, R., 2018. Detection of myocardial infarction in 12 lead ECG using support vector machine, 64, pp.138-147. Rewa: ScienceDirect

GUILLEM, M.S. et al., 2004, September. Q wave myocardial intarction analysed by body surface potential mapping, 2004 (pp. 725-728). Valencia: IEEE.Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C) (pp. 24-28).

WAGNER, P. et al., 2020. PTB-XL, a large publicly available electrocardiography dataset. 7(1), pp.1-15. Berlin: Nature Opie, L.H. ed., 2004. Heart physiology: from cell to circulation. 4th ed. Cincinnati: Lippincott Williams & Wilkins.2830.

OPIE, L.H. ed., 2004. Heart physiology: from cell to circulation. 4th ed. Cincinnati: Lippincott Williams & Wilkins.

HAMILTON, P.S., 1996. A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE transactions on biomedical engineering, 43(1), pp.105-109. Easton: IEEE

BEDNAREK, A., MOSKAL, P., KJELBASA, G., Baranowski, R., Rajzer, M. and Jastrzębski, M., 2020. Selective and nonselective His bundle pacing unmasks pathological Q waves on the electrocardiogram, 78(11), pp.1178-1179. Krakow: Kardiologia Polska (Polish Heart Journal)

Harvard Medical School, 2021. Want to check your heart rate? Here’s how. [pdf] Cambridge: Harvard Health Publishing

GRESCH, E.D. and RAMSDALE, D.R., 2003. Acute coronary syndrome: unstable angina and non-ST segment elevation myocardial infarction, 326(7401), pp.1259-1261. Winnipeg: The BMJ

ZIMETBAUM, P.J. and JOSEPHSON, M.E., 2003. Use of the electrocardiogram in acute myocardial infarction, 348(10), pp.933-940. Boston: New England Journal of Medicine

KOSSMANN, C.E., 1953. The normal electrocardiogram. Circulation, 8(6), pp.920-936.

HUANG, S., et al., 2018. Applications of support vector machine (SVM) learning in cancer genomics. Cancer genomics & proteomics, 15(1), pp.41-51. Winnipeg: International Institute of Anticancer Reasearch

PEDREGOSA, et al, 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12.

PRASAD, A.S. and KAVANASHREE, N., 2019, July. ECG monitoring system using AD8232 sensor. In 2019 International Conference on Communication and Electronics Systems (ICCES) (pp. 976-980). Mysuru: IEEE.

BADAMASI, Y.A., 2014, September. The working principle of an Arduino, (pp. 1-4). Abuja: IEEE.

WILCHER, D., 2012. Learn Electronics with Arduino. CA. New York: Springer Science & Business Media

Diterbitkan

29-12-2022

Cara Mengutip

Sistem Deteksi Myocardial Infarction Berdasarkan Pathological Q Waves Dan ST Segment Elevation Menggunakan Metode Support Vector Machine. (2022). Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(7), 1757-1762. https://doi.org/10.25126/jtiik.2022976837