Implementasi Algoritma Mickey 2.0 untuk Mengamankan Komunikasi Data pada Perangkat Bluetooth Low Energy

Penulis

  • Amelia Dwi Rochani Universitas Brawijaya, Malang
  • Ari Kusyanti Universitas Brawijaya, Malang
  • Fariz Andri Bakhtiar Universitas Brawijaya, Malang

DOI:

https://doi.org/10.25126/jtiik.2022976767

Abstrak

Kondisi Internet of Things saat ini yang cenderung tanpa menggunakan fitur keamanan dapat menjadi tantangan untuk realisasi Internet of things terutama di bidang privasi dan kerahasiaan data, khususnya pada modul sensorik berdaya rendah yaitu Bluetooth Low Energy. Adanya celah keamanan pada Bluetooth Low Energy menjadi perhatian besar di jaringan Internet of Things saat ini, terutama yang terhubung dengan jaringan public. Data dari perangkat dapat diretas dan dimodifikasi oleh peretas. Dengan menerapkan algoritma enkripsi pada perangkat Bluetooth Low Energy dapat menjamin aspek confidentiality data serta dapat mencegah peretas menyadap dan mencuri data. Pada penelitian ini digunakan algoritma Mickey 2.0 untuk melakukan enkripsi. Algoritma ini berhasil melewati proyek eStream dan menjadi kandidat ideal untuk perangkat berkonsumsi daya rendah. Data yang diamankan berasal dari sensor DHT11 yang dikirim menggunakan protokol Bluetooth Low Energy. Sebelum dikirim dilakukan enkripsi pada sisi server menggunakan algoritma Mickey 2.0 dan proses dekripsi akan dilakukan pada sisi client. Hasil keystream akan divalidasi terlebih dahulu pada pengujian test vector. Untuk mengetahui tingkat keamanan dilakukan pengujian serangan pasif sniffing dan serangan aktif Known Plaintext Attack (KPA). Serangan pasif dan serangan aktif yang dilakukan tidak berhasil mendapatkan plaintext.

 

Abstract

 The current condition of the Internet of Things tends to be without the use of security features, especially in the field of privacy and data confidentiality, especially in the low power sensor module i.e. Bluetooth Low Energy. The existence of security holes in Bluetooth Low Energy is a big concern for Internet of Things networks, especially those connected to public networks. Data from the device can be hacked and modified by hackers. By implementing encryption algorithms on Bluetooth Low Energy devices it can guarantee data confidentiality aspects and can prevent hackers from eavesdropping and stealing data. In this research, Mickey 2.0 algorithm is used for encryption. This algorithm successfully passed the eStream project and became an ideal candidate for low power consumption devices. The secured data comes from the DHT11 sensor which is sent using the Bluetooth Low Energy protocol. Before sending data, encryption is performed on the server side using the Mickey 2.0 algorithm and the decryption process will be carried out on the Client side. The keystream results will be validated first in the test vector test. To determine the level of security, a passive sniffing attack and an active Known Plaintext Attack (KPA) were tested. Passive attacks and active attacks do not get the plaintext.

 


 

Downloads

Download data is not yet available.

Referensi

BABBAGE, S. & DODD, M., 2006. The stream cipher Mickey 2.0.

BARUA, A., AL AMIN, M.A., HOSSAIN, M.S. & HOSSAIN, E., 2022. Security and Privacy Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehensive Survey. Barua, A., Al Alamin, M. A., Hossain, M. S., & Hossain, E. (2022). Security and Privacy Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehensive Survey. IEEE Open Journal of the Communications Society.

GIWON , K., JEEHYONG , K., JAEWON, N. & SUNGHYUN, C., 2016. Bluetooth low energy security vulnerability and improvement method. IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), pp.(pp. 1-4).

KATZ, J. & LINDELL, Y., 2015. Chapman & Hall/CRC Cryptography and Network Security. In INTRODUCTION TO MODERN CRYPTOGRAPHY (Second Edition).

MAIER, A., SHARP, A. & VAGAPOV, Y., 2017. Comparative analysis and practical implementation of the microcontroller module for the Internet of Things. Proc.7th IEEE Int.Conference on Internet Technologies and Applications.

MENEZES, A.J., OORSCHOT, P.C.V. & VANSTONE, S.A., 1997. HANDBOOK of APPLIED CRYPTOGRAPHY. London NewYork: CRC Press.

NAWIR, M., AMIR, A., YAAKOB, N. & LYNN, O., 2016. Internet of Things (IoT): Taxonomy of security attacks. International Conference on Electronic Design (ICED), pp.321-26.

SRIVASTA, D., KESARWANI, A. & DUBEY, S., 2018. Measurement of Temperature and Humidity by using Arduino Tool and DHT11. International Research Journal of Engineering and Technology (IRJET), (5.12), pp.876-78.

TOSI, J. et al., 2017. Performance Evaluation of Bluetooth Low Energy:A Systematic Review. Sensors.

TOWNSEND, K., CUFFI , C., AKIBA & DAVIDSON, R., 2014. Getting Started with Bluetooth Low Energy: Tools and Techniques for Low-Power Networking. O'Reilly Media, Inc.

WEBER, M. & BOBAN, M., 2016. Security challenges of the internet of things. International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp.638-43.

ZHANG, Q..&.L.Z., 2017. Security analysis of bluetooth low energy based smart wristbands. International Conference on Frontiers of Sensors Technologies (ICFST), pp.(pp. 421-425).

Diterbitkan

29-12-2022

Cara Mengutip

Implementasi Algoritma Mickey 2.0 untuk Mengamankan Komunikasi Data pada Perangkat Bluetooth Low Energy. (2022). Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(7), 1787-1794. https://doi.org/10.25126/jtiik.2022976767