CHEST X-RAY IMAGE SEGMENTATION USING MODIFIED DEEPLABV3+ METHOD

Penulis

  • Rima Tri Wahyuningrum Universitas Trunojoyo Madura, Kabupaten Bangkalan
  • Maughfirotul Jannah Universitas Trunojoyo Madura, Kabupaten Bangkalan
  • Budi Dwi Satoto Universitas Trunojoyo Madura, Kabupaten Bangkalan
  • Amillia Kartika Sari Universitas Airlangga, Surabaya
  • Anggraini Dwi Sensusiati Universitas Airlangga, Surabaya

DOI:

https://doi.org/10.25126/jtiik.2023106754

Abstrak

COVID-19 is a disease that affects the human respiratory system. The latest developments in September 2022 the number of confirmed cases of COVID-19 worldwide reached 608,328,548 with 6,501,469 patients who died. While in Indonesia confirmed COVID-19 reached 6,408,806 with 157,892 patients who died. Reserve Transcription Polymerase Chain Reaction (RT-PCR) is the most widely used tool. However, the latest RT-PCR test report shows that the RT-PCR test is inadequate. As an alternative, radiographic images such as chest x-rays and CT scans can help detect this. Radiographic images, especially x-rays, need processing to be able to make a diagnosis. Computer Aided Diagnosis (CAD) is a computer assisted diagnosis system that can be used as supporting information in making a diagnosis. To make it easier to make a diagnosis, we need a deep learning model that can help with this. DeepLabV3+ is a method that can carry out the segmentation process. DeepLabV3+ which is an extension of DeepLabV3 with the aim of improving the segmentation results. DeepLabV3+ uses a modified Xception as the backbone. In this study, 1,500 chest x-ray image data were used which were then divided into 80% for training data and 20% for testing data. There are 4 test scenarios in this study, namely with a learning rate of 0.01 without CLAHE, a learning rate of 0,01 and using CLAHE, a learning rate of 0,0001 without CLAHE, and a learning rate of 0,0001 using CLAHE. Of the 4 scenarios the learning rate scenario is 0,01 and using CLAHE gets the highest evaluation results using the Dice Similarity Coefficient (DSC) of 96.91%. 

Downloads

Download data is not yet available.

Referensi

BASO, B., & SUCIATI, N. 2020. Temu Kembali Citra Tenun Nusa Tenggara Timur menggunakan Esktraksi Fitur yang Robust terhadap Perubahan Skala, Rotasi, dan Pencahayaan. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(2), 349. https://doi.org/10.25126/jtiik.2020722002

CHEN, L.-C., PAPANDREOU, G., KOKKINOS, I., MURPHY, K., & YUILLE, A. L. 2014. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ArXiv, 40(4), 1–14.

https://doi.org/https://doi.org/10.48550/arXiv.1412.7062

CHEN, L.-C., PAPANDREOU, G., KOKKINOS, I., MURPHY, K., & YUILLE, A. L. 2018. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848. https://doi.org/10.1109/TPAMI.2017.2699184

CHEN, L.-C., PAPANDREOU, G., SCHROFF, F., & ADAM, H. 2017.

Rethinking Atrous Convolution for Semantic Image Segmentation. ArXiv. http://arxiv.org/abs/1706.05587

CHEN, L.-C., ZHU, Y., PAPANDREOU, G., SCHROFF, F., & ADAM, H. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11211 LNCS, 833–851. https://doi.org/10.1007/978-3-030-01234-2_49

CHENG, J., TIAN, S., YU, L., LU, H., & LV, X. 2020. Fully convolutional attention network for biomedical image segmentation. Artificial Intelligence in Medicine, 107(June), 101899. https://doi.org/10.1016/j.artmed.2020.101899

EL-BANA, S., AL-KABBANY, A., & SHARKAS, M. 2020. A multi-task pipeline with specialized streams for classification and segmentation of infection manifestations in COVID-19 scans. PeerJ Computer Science, 6, 1–27. https://doi.org/10.7717/peerj-cs.303

HASMA, Y. A., & SILFIANTI, W. 2018. Implementasi Deep Learning Menggunakan Framework Tensorflow Dengan Metode Faster Regional Convolutional Neural Network Untuk Pendeteksian Jerawat. Jurnal Ilmiah Teknologi Dan Rekayasa, 23(2), 89–102. https://doi.org/10.35760/tr.2018.v23i2.2459

KAUR, D., & KAUR, Y. (2014). Various Image Segmentation Techniques: A Review. International Journal of Computer Science and Mobile Computing, 3(5), 809–8014.

KHAN, Z., YAHYA, N., ALSAIH, K., ALI, S. S. A., & MERIAUDEAU, F. 2020. Evaluation of deep neural networks for semantic segmentation of prostate in T2W MRI. Sensors (Switzerland), 20(11), 1–17. https://doi.org/10.3390/s20113183

KUMASEH, M. R., LATUMAKULITA, L., & NAINGGOLAN, N. (2013). Segmentasi Citra Digital Ikan Menggunakan Metode Thresholding. Jurnal Ilmiah Sains, 13(1), 75–79. https://doi.org/10.35799/jis.17.2.2017.18128

MULLER, D., SOTO-REY, I., & KRAMER, F. 2020. Automated Chest CT Image Segmentation of COVID-19 Lung Infection based on 3D U-Net. ArXiv, abs/2007.0, 1–9.

https://www.semanticscholar.org/paper/Automated-Chest-CT-Image-Segmentation-of-COVID-19-Müller-Rey/7c30e2d18c5caa81507a44c80410eb33226f3f42

NUGROHO, P. A., FENRIANA, I., & ARIJANTO, R. 2020. Implementasi Deep Learning Menggunakan Convolutional Neural Network ( CNN ) Pada Ekspresi Manusia. Algor, 2(1), 12–21.

ROTHAN, H. A., & BYRAREDDY, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109(February), 102433. https://doi.org/10.1016/j.jaut.2020.102433

SAOOD, A., & HATEM, I. (2021). COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet. BMC Medical Imaging, 21(1), 1–10. https://doi.org/10.1186/s12880-020-00529-5

SHI, F., WANG, J., SHI, J., WU, Z., WANG, Q., TANG, Z., HE, K., SHI, Y., & SHEN, D. (2021). Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. IEEE Reviews in Biomedical Engineering, 14, 4–15. https://doi.org/10.1109/RBME.2020.2987975

SUSANTO, A. 2019. Penerapan Operasi Morfologi Matematika Citra Digital untuk Ekstraksi Area Plat Nomor Kendaraan Bermotor. Pseudocode, VI, 9.

SUSILO, A.,dkk. 2020. Coronavirus Disease 2019: Tinjauan Literatur Terkini. Jurnal Penyakit Dalam Indonesia, 7(1), 45–67. https://doi.org/10.25104/transla.v22i2.1682

WHO. 2022. COVID-19 Weekly Epidemiological Update. In World Health Organization (Issue February).

https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---21-september-2022

YAN, Q., WANG, B., GONG, D., LUO, C., ZHAO, W., SHEN, J., SHI, Q., JIN, S., ZHANG, L., & YOU, Z. 2020. COVID-19 Chest CT Image Segmentation - A Deep Convolutional Neural Network Solution. ArXiv, abs/2004.1, 1–10. http://arxiv.org/abs/2004.10987

YUDISTIRA, N., WIDODO, A. W., & RAHAYUDI, B. 2020. Deteksi Covid-19 pada Citra Sinar-X Dada Menggunakan Deep Learning yang Efisien. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1289. https://doi.org/10.25126/jtiik.2020763651

Diterbitkan

01-07-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

CHEST X-RAY IMAGE SEGMENTATION USING MODIFIED DEEPLABV3+ METHOD. (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(3), 687-698. https://doi.org/10.25126/jtiik.2023106754