Deteksi Cyberbullying dengan Mesin Pembelajaran Klasifikasi (Supervised Learning): Peluang dan Tantangan
DOI:
https://doi.org/10.25126/jtiik.2022976747Abstrak
Perkembangan teknologi media sosial tidak hanya memberikan kemudahan dalam berkomunikasi antar individu, akan tetapi juga dapat mengancam kehidupan sosial individu seperti tidakan cyberbullying. Bervariasinya pola dan karakteritik cyberbullying mengakibatkan sulitnya proses deteksi cyberbullying, yang dilakukan oleh pelaku cyberbullying. Penelitian deteksi pola dan karakteristik cyberbullying banyak dilakukan dengan berbagai metode, seperti dengan mengimplementasikan Machine Learning, Natural Language Processing (NLP), dan Sentiment Analysis yang memiliki variasi akurasi yang berbeda, dengan keunggulan dan kelemahan dari masing-masing metode. Implementasi Machine Learning untuk deteksi cyberbullying dapat dilakukan dengan berbagai algoritma, seperti algoritma probabilistik (Naïve Bayes) maupun supervised learning (Support Vector Machine, k-Nearest Neighbour, Decission Tree), dan metode lainnya yang hingga saat ini terus dikembangkan dengan berbagai pendekatan untuk meningkatkan akurasi deteksi cyberbullying atau non-cyberbullying. Adapun peluang dan tantangan penelitian deteksi cyberbullying seperti penerapan pada variasi domain bahasa, dan bentuk ekspresi yang dilakukan pada suatu lingkungan atau budaya, yang masih terdapat ruang untuk dikembangkan dan dijelajah secara luas. Pada artikel ini menjabarkan penelitian berikutnya berupa mengimplementasikan metode pembelajaran klasifikasi (Supervised Learning) dengan modifikasi tahapan untuk meningkatkan akurasi klasifikasi.
Downloads
Referensi
Barlett, C. P. (2019). Chapter 2—Cyberbullying, Traditional Bullying, and Aggression: A Complicated Relationship. Dalam C. P. Barlett (Ed.), Predicting Cyberbullying (hlm. 11–16). Academic Press. https://doi.org/10.1016/B978-0-12-816653-6.00002-9
Bozyiğit, A., Utku, S., & Nasibov, E. (2021). Cyberbullying detection: Utilizing social media features. Expert Systems with Applications, 179, 115001. https://doi.org/10.1016/j.eswa.2021.115001
Chawla, P., Hazarika, S., & Shen, H.-W. (2020). Token-wise sentiment decomposition for ConvNet: Visualizing a sentiment classifier. PacificVis 2020 Workshop on Visualization Meets AI, 4(2), 132–141. https://doi.org/10.1016/j.visinf.2020.04.006
Chia, Z. L., Ptaszynski, M., Masui, F., Leliwa, G., & Wroczynski, M. (2021). Machine Learning and feature engineering-based study into sarcasm and irony classification with application to cyberbullying detection. Information Processing & Management, 58(4), 102600. https://doi.org/10.1016/j.ipm.2021.102600
Fiok, K., Karwowski, W., Gutierrez, E., & Wilamowski, M. (2021). Analysis of sentiment in tweets addressed to a single domain-specific Twitter account: Comparison of model performance and explainability of predictions. Expert Systems with Applications, 186, 115771. https://doi.org/10.1016/j.eswa.2021.115771
Fortunatus, M., Anthony, P., & Charters, S. (2020). Combining textual features to detect cyberbullying in social media posts. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES2020, 176, 612–621. https://doi.org/10.1016/j.procs.2020.08.063
I. Dilrukshi & K. De Zoysa. (2013). Twitter news classification: Theoretical and practical comparison of SVM against Naive Bayes algorithms. 2013 International Conference on Advances in ICT for Emerging Regions (ICTer), 278–278. https://doi.org/10.1109/ICTer.2013.6761192
Li, Q. (2007). New bottle but old wine: A research of cyberbullying in schools. Computers in Human Behavior, 23(4), 1777–1791. https://doi.org/10.1016/j.chb.2005.10.005
Long, S., He, X., & Yao, C. (2021). Scene Text Detection and Recognition: The Deep Learning Era. International Journal of Computer Vision, 129(1), Art. 1. https://doi.org/10.1007/s11263-020-01369-0
López-Vizcaíno, M. F., Nóvoa, F. J., Carneiro, V., & Cacheda, F. (2021). Early detection of cyberbullying on social media networks. Future Generation Computer Systems, 118, 219–229. https://doi.org/10.1016/j.future.2021.01.006
M. Shirakawa, K. Nakayama, T. Hara, & S. Nishio. (2015). Wikipedia-Based Semantic Similarity Measurements for Noisy Short Texts Using Extended Naive Bayes. IEEE Transactions on Emerging Topics in Computing, 3(2), 205–219. https://doi.org/10.1109/TETC.2015.2418716
Mai, S. D., & Ngo, L. T. (2018). Multiple kernel approach to semi-supervised fuzzy clustering algorithm for land-cover classification. Engineering Applications of Artificial Intelligence, 68, 205–213. https://doi.org/10.1016/j.engappai.2017.11.007
Murnion, S., Buchanan, W. J., Smales, A., & Russell, G. (2018). Machine learning and semantic analysis of in-game chat for cyberbullying. Computers & Security, 76, 197–213. https://doi.org/10.1016/j.cose.2018.02.016
Ozbay, F. A., & Alatas, B. (2020). Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Statistical Mechanics and its Applications, 540, 123174. https://doi.org/10.1016/j.physa.2019.123174
R. Devika, S. Vairavasundaram, C. S. J. Mahenthar, V. Varadarajan, & K. Kotecha. (2021). A Deep Learning Model Based on BERT and Sentence Transformer for Semantic Keyphrase Extraction on Big Social Data. IEEE Access, 9, 165252–165261. https://doi.org/10.1109/ACCESS.2021.3133651
Rajput, A. (2020). Chapter 3—Natural Language Processing, Sentiment Analysis, and Clinical Analytics. Dalam M. D. Lytras & A. Sarirete (Ed.), Innovation in Health Informatics (hlm. 79–97). Academic Press. https://doi.org/10.1016/B978-0-12-819043-2.00003-4
Russel, S., & Norvig, P. (2021). Artificial Intelligence A Modern Approach. Pearson.
S. Hassan, M. Rafi, & M. S. Shaikh. (2011). Comparing SVM and naïve Bayes classifiers for text categorization with Wikitology as knowledge enrichment. 2011 IEEE 14th International Multitopic Conference, 31–34. https://doi.org/10.1109/INMIC.2011.6151495
Sheldon, P., Rauschnabel, P. A., & Honeycutt, J. M. (2019). Chapter 3—Cyberstalking and Bullying. Dalam P. Sheldon, P. A. Rauschnabel, & J. M. Honeycutt (Ed.), The Dark Side of Social Media (hlm. 43–58). Academic Press. https://doi.org/10.1016/B978-0-12-815917-0.00003-4
T. Mahlangu & C. Tu. (2019). Deep Learning Cyberbullying Detection Using Stacked Embbedings Approach. 2019 6th International Conference on Soft Computing & Machine Intelligence (ISCMI), 45–49. https://doi.org/10.1109/ISCMI47871.2019.9004292
Tachicart, R., & Bouzoubaa, K. (2021). Moroccan Arabic vocabulary generation using a rule-based approach. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2021.02.013
T.K., B., Annavarapu, C. S. R., & Bablani, A. (2021). Machine learning algorithms for social media analysis: A survey. Computer Science Review, 40, 100395. https://doi.org/10.1016/j.cosrev.2021.100395
Vouros, A., & Vasilaki, E. (2021). A semi-supervised sparse K-Means algorithm. Pattern Recognition Letters, 142, 65–71. https://doi.org/10.1016/j.patrec.2020.11.015
W. M. Al-Rahmi, N. Yahaya, M. M. Alamri, N. A. Aljarboa, Y. B. Kamin, & F. A. Moafa. (2019). A Model of Factors Affecting Cyber Bullying Behaviors Among University Students. IEEE Access, 7, 2978–2985. https://doi.org/10.1109/ACCESS.2018.2881292
W. M. Al-Rahmi, N. Yahaya, M. M. Alamri, N. A. Aljarboa, Y. B. Kamin, & M. S. B. Saud. (2019). How Cyber Stalking and Cyber Bullying Affect Students’ Open Learning. IEEE Access, 7, 20199–20210. https://doi.org/10.1109/ACCESS.2019.2891853
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).