Automatic Question Generation (AQG) dari Dokumen Teks Bahasa Indonesia Berdasarkan Non-Factoid Quesion

Penulis

Aminudin Aminudin, Azhari SN, Baaras Ahmad

Abstrak

Automatic Question Generation (AQG) adalah sistem yang dapat membangkitkan pertanyaan secara otomatis dari teks atau dokumen dengan menggunakan metode atau pola-pola tertentu. Diharapkan sistem AQG yang dikembangkan bekerja seperti halnya manusia membuat pertanyaan setelah diberikan suatu teks. Manusia dapat membuat pertanyaan, dikarenakan manusia dapat memahami teks yang diberikan dan berdasarkan pengetahuan-pengetahuan yang dimilikinya. Untuk mengembangkan sistem AQG penelitian ini, dilakukan kombinasi beberapa metode diantaranya algoritme Naive Bayes Classifier untuk mengklasifikasikan kalimat ke dalam jenis kalimat non-factoid. Chunking labelling untuk memberikan label pada masing-masing kalimat dari hasil klasifikasi dan pendekatan template untuk mencocokan hasil kalimat dengan template pertanyaan yang dibuat. Hasil pertanyaan yang dihasilkan oleh sistem akan diukur berdasarkan paramater yang telah ditentukan yang didasarkan atas pengukuran recall, precision dan F-Measure. Dengan adanya sistem AQG ini diharapkan dapat membantu guru mata pelajaran Biologi untuk membuat pertanyaan secara otomatis dan efektif serta efisien.

 

Abstract

Automatic Question Generation (AQG) is a system can generate question with automatically from text or document by using methods or certain patterns. Expected system AQG developed works like it does humans make create a question after being given a text. Humans can create a question, because humans can understand the given text and based on knowledge assets. To develop the system of AQG in this research, will do a combination of several methods including Naïve Bayes Clasifier algorithm to classify the sentence into a kind of non-sentence factoid. Chunking labelling to provide labels on each sentence and template approach to match the right results sentences with question templates created. The results of the question that are generated by the system will be measured based on predetermined parameters required that is based on the measuring precision, recall and F-Measure. With the existence of the AQG system is expected to help teachers of Biology subjects to make the question automatically, effectively and efficiently.

Kata Kunci


Automatic Question Generation (AQG); Naive Bayes Classifier; Chunking Labelling

Teks Lengkap:

PDF

Referensi


AJMERA, J 2014, Automatic Generation of Question Answer Pairs From Noisy Case Logs, IEEE 30th International Conference.

Ali, CHALI dan HASAN., 2010, Automatic Question Generation from Sentences, pp. 19–23, Proc. TALN 2010.

AL-YAHYA, M., 2011., A Question Generation Engine for Educational Assesment Based on Domain Ontologies, 11th IEEE International Conference on Advanced Learning Technologies, pp. 393-395.

AMINUDIN dan ALWI., 2018, Analisa Multithreading pada Sistem Rekomendasi Menggunakan Metode Collaborative Filtering dengan Apache Mahout, Techno, vol. 17. No. 1, pp 1-11.

BEDNARIK. L & KOVACS. L 2012, Automated EA-type Question Generation from Annotated Texts, 7th IEEE International Symposium on Applied (computational lntelligence and Informatics), pp. 191-195.

DAS, R, ELIKKOTIl, A & KALADY, S 2010, Natural Language Question Generation Using Syntax and Keywords', Proceedings of the Third Workshop on Question Generation, Pittsburgh

EFFENBERGER, T., 2015, “Automatic Question Generation and Adaptive Practice,”.

FATTOH, A. E. ABOUTABL dan HAGGAG., 2015, Semantic Question Generation Using Artificial Immunity, vol. 7, no. 1, pp. 1–8, Int. J. Mod. Educ. Comput. Sci.

FACHRURROZI. M., 2013, Sistem Pembangkit Pertanyaan Otomatis Dengan Metode Template-Based.

GARG, S & GOYAL, V 2010, System for Generating Questions Automatically From Given Punjabi Text, Punjabi University, p. 324.

HAN, J dan KAMBER, M 2006, Data Mining: Concepts and Techniques, 2nd edn, Morgan Kauffman Publisher, San Francisco.

HEILMAN, M 2011, Automatic Factual Question Generation from Text, Carnegie Mellon University, Pittsburgh.

HEILMAN, M & SMITH, AN 2009, Question Generation via Overgenerating Transformations and Ranking, Carnegie Mellon University, Pittsburgh.

KALADY. S, ELIKKOTIL. A dan DAS. R., 2010, Natural Language Question Generation Using Syntax and Keywords, p. 91, Tenth Int. Conf. Intell. Tutoring Syst.,

P. MANNEM. P, PRASAD. P dan JHOSI. A., 2010 Question Generation from Paragraphs at UPenn : QGSTEC System Description, pp. 84–91 Proc. QG Third Work. Quest. Gener. Pittsburg, PA,.

WIJOYO. S, HERLAMBANG. A, ROZI. F, ISANTA. S., 2017, Optimasi Suffix Tree Clustring dengan Wordnet dan Named Entity Recognition untuk Pengelompokan Documen, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 4, No. 4, pp, 263-267

SUWARNINGSIH.W, SUPRIANA, A. dan PURWARIANTI., 2014, Tantangan dan Peluang pada Question Generation, vol. 6, no. 2, pp. 719–730, J. Sist. Inf.

TING, S.L. dan TSANG A. H. C., 2011 “Is Naïve bayes a good classifier for document classification?, vol. 5, no. 3, pp. 37–46 Int. J. Softw. Eng. its Appl.

TAN.P-N, STENIBACH, M dan KUMAR V., 2006, Introduction to Data Mining, Addison-Wesley Companion Book Site , United States.




DOI: http://dx.doi.org/10.25126/jtiik.201852664