Film Recommender System Menggunakan Metode Neural Collaborative Filtering

Penulis

  • Ni’mah Khoiriyah Ayyiyah Universitas Diponegoro, Semarang
  • Retno Kusumaningrum Universitas Diponegoro, Semarang
  • Rismiyati Rismiyati Universitas Diponegoro, Semarang

DOI:

https://doi.org/10.25126/jtiik.2023106616

Abstrak

Pada saat ini media hiburan telah berkembang pesat dan tersedia secara digital. Hiburan khususnya dalam bentuk film semakin tersedia secara luas. Keinginan untuk menikmati hiburan dalam media digital mendorong pengguna internet lain untuk mengunjungi situs-situs yang menawarkan film tertentu, sehingga meningkatkan minat mereka terhadap website yang menawarkan hiburan digital. Tidak semua situs penyedia hiburan digital menyajikan item yang menjanjikan kepuasan pengguna. Sebuah item yang sama tidak tentu akan disukai oleh semua user dan terbatasnya informasi yang disediakan menjadi salah satu kendala bagi pengguna sehingga membutuhkan waktu untuk pengguna menemukan film yang sesuai. Oleh karena itu recommender system dibutuhkan dalam memberikan informasi berdasarkan kebutuhan pengguna. Recommender system akan membantu seorang user dalam mencari sebuah item yang berdasarkan ketertarikan masing-masing dengan memberikan prediksi beberapa item berdasarkan preferensi user yang berasal dari riwayat penilaian user terhadap item tersebut. Recommender system juga telah mengalami kemajuan dalam mengimplementasikan metode. Deep learning yang merupakan salah satu penemuan dalam metode recommender system dirancang untuk mengatasi beberapa kekurangan dari teknlogi lain dan memberikan revolusi arsitektur rekomendasi dalam meningkatkan kinerja dalam pemberian prediksi. Penelitian ini menggunakan pendekatan prediksi Collaborative Filtering dengan mengimplementasikan deep learning berdasarkan teknologi Neural Collaborative Filtering pada dataset MovieLens. Evaluasi model dilakukan menggunakan metrik skor regresi Root Mean Square Error (RMSE). Hasil pada pengujian model menunjukkan hasil terbaik dengan nilai rata-rata loss value sebesar 0,1356 pada fase train dan sebesar 0,8898 pada fase val, dengan learning rate dan batch size memperoleh kinerja terbaik ketika learning rate bernilai 0,001 dan batch size dengan nilai 1024.

 

Abstract

 

At this time entertainment media has become available digitally. Entertainment especially in the form of movies is increasingly widely available. The desire to enjoy entertainment in digital media encourages other internet users to visit sites that offer certain movies, thus increasing interest in websites that offer digital entertainment. Not all digital entertainment provider sites present items that promise user satisfaction. The same item will not necessarily liked by all users and the limited information is one of the obstacles for users so that it takes time for users to find the right film. Therefore, a recommendation system is needed in providing information based on user needs. The recommendation system will help users find items based on their respective interests by providing predictions. The recommender system will help a user find an item based on their respective interests by providing predictions of several items based on user preferences derived from the user's assessment history of the item. The recommendation system has also made progress in implementing the method. Deep learning which is one of the discoveries in the recommender system method is designed to overcome some of the shortcomings of other technologies and provide a recommendation architecture revolution in improving performance in delivery. This study using a Collaborative Filtering prediction approach by implementing deep learning based on Neural Collaborative Filtering technology on the MovieLens dataset. The evaluation of the model was carried out using the Root Mean Square Error regression score metric. The results on the model test show the best results with can average loss value of 0,1356 on the train label and 0,8898 on the val label, with the learning rate and batch size getting the best performance when the learning rate is 0,001 and the batch size is 1024.

Downloads

Download data is not yet available.

Referensi

AL AMIN, A. 2021. Mereduksi Error Prediksi Pada Sistem Rekomendasi Menggunakan Pendekatan Collaborative Filtering Berbasis Model Matrix Factorization. EXPLORE, 11(2), 8-14. https://doi.org/10.35200/EXPLORE.V11I2.434.

BOBADILLA, J., ALONSO, S., & HERNANDO, A. 2020. Deep learning architecture for collaborative filtering recommender systems. Applied Sciences, 10(7), 2441. https://doi.org/10.3390/app10072441.

CHAVARE, S. R., AWATI, C. J., & SHIRGAVE, S. K. 2021. Smart recommender system using deep learning. In 2021 6th International Conferense on Inventive Computation Technologies. (ICICT) (pp. 590-594). IEEE. https://doi.org/10.1109/ICICT50816.2021.9358580.

DWICAHYA, IMAM. 2018. Perbandingan Sistem Rekomendasi Film Metode User-based dan Item-based Collaborative Filtering. Universitas Sanata Dharma.

CAKRANINGRAT, R. 2011. Sistem pendukung Keputusan untuk UMKM. [ebook]. UBX Press. Tersedia melalui: Perpustakaan Universitas BX <http://perpustakaan.ubx.ac.id> [Diakses 1 Juli 2021]

GARANAYAK, M. dkk. 2019. Recommender system using item based collaborative filtering (CF) and K-means. International Journal of Knowledge-based and Intelligent Engineering Systems, 23(2), 93-101. https://doi.org/ 10.3233/KES-190402.

GIRSANG, A. S., & WIBOWO, A. 2021. Neural collaborative for music recommendation system. In IOP Conference Series: Materials Science and Engineering (Vol. 1071, No. 1, p. 012021). IOP Publishing. https://iopscience.iop.org/article/10.1088/1757-899X/1071/1/012021

HE, X. dkk. 2017. Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web (pp. 173-182). https://doi.org/10.1145/3038912.3052569.

LAKSANA, E. A. 2014. Collaborative Filtering dan Aplikasinya. Jurnal Ilmiah Teknologi Infomasi Terapan, 1(1). https://doi.org/10.33197/jitter.vol1.iss1.2014.44

LIU, Y. dkk. 2018. A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering. Big Data Mining and Analytics, 1(3), 211-221. https://doi.org/10.26599/BDMA.2018.9020019

MASRURI, F., & MAHMUDY, W. F. 2007. Personalisasi web e-commerce menggunakan recommender system dengan metode item-based collaborative filtering. Jurnal Ilmiah Kursor, 3(1).

Grouplens.org. 1998. MovieLens 100K dataset. Tersedia di: <https://grouplens.org/datasets/movielens/100k/> [Diakses 3 September 2021].

CC, N., & MOHAN, A. 2019. A social recommender system using deep architecture and network embedding. Applied Intelligence, 49(5), 1937-1953. https://doi.org/10.1007/s10489-018-1359-z

RIZKY, M. I., ASROR, I., & MURTI, Y. R. 2020. Sistem Rekomendasi Program Studi Untuk Siswa Sma Sederajat Menggunakan Metode Hybrid Recommendation Dengan Content Based Filtering Dan Collaborative Filtering. eProceedings of Engineering, 7(1).

ROCHMAWATI, N. dkk. 2021. Analisa Learning Rate dan Batch Size pada Klasifikasi Covid Menggunakan Deep Learning dengan Optimizer Adam. JIEET (Journal of Information Engineering and Educational Technology), 5(2), 44-48. https://doi.org/ 10.26740/jieet.v5n2.p44-48

PUTRA, A. I., & SANTIKA, R. R. 2020. Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering. Edumatic: Jurnal Pendidikan Informatika, 4(1), 121-130. https://doi.org/10.29408/edumatic.v4i1.2162

PRATAMA, Y. A. dkk. 2013. Digital Cakery Dengan Algoritma Collaborative Filtering, 14(1), 79–88.

SAHOO, A. K. dkk. 2019. DeepReco: deep learning based health recommender system using collaborative filtering. Computation, 7(2), 25. https://doi.org/10.3390/computation7020025

SARWAR, B. dkk. 2001. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). https://doi.org/10.1145/371920.372071

SHAKIROVA, E. 2017. Collaborative filtering for music recommender system. In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 548-550). IEEE. https://doi.org/10.1109/EIConRus.2017.7910613

SMITH, L. N. 2017. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on applications of computer vision (WACV) (pp. 464-472). IEEE. https://doi.org/10.1109/WACV.2017.58

YOSHUA, I., & BUNYAMIN, H. 2021. Pengimplementasian Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering. Jurnal STRATEGI-Jurnal Maranatha, 3(1), 1-16.

ZARZOUR, H., AL-SHARIF, Z. A., & JARARWEH, Y. 2019. RecDNNing: a recommender system using deep neural network with user and item embeddings. In 2019 10th International Conference on Information and Communication Systems (ICICS) (pp. 99-103). IEEE. https://doi.org/10.1109/IACS.2019.8809156

ZHANG, L. dkk. 2018. A recommendation model based on deep neural network. IEEE Access, 6, 9454-9463. https://doi.org/10.1109/ACCESS.2018.2789866

ZHANG, S. dkk. 2019. Deep learning based recommender system: ` A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1-38. https://doi.org/10.1145/3285029

Diterbitkan

01-07-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Film Recommender System Menggunakan Metode Neural Collaborative Filtering. (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(3), 699-708. https://doi.org/10.25126/jtiik.2023106616