Analisis dan Perancangan Aplikasi Chatbot Menggunakan Framework Rasa dan Sistem Informasi Pemeliharaan Aplikasi (Studi Kasus: Chatbot Penerimaan Mahasiswa Baru Politeknik Astra)

Penulis

  • Laksmi Anindyati Politeknik Astra, Jakarta Utara

DOI:

https://doi.org/10.25126/jtiik.20231026409

Abstrak

Chatbot menjadi suatu kebutuhan bisnis yang membutuhkan pelayanan interaksi secara real-time dan 24 jam. Kebutuhan tersebut juga diperlukan saat penerimaan mahasiswa baru di Politeknik Astra. Chatbot dapat menjadi salah satu penyedia informasi yang interaktif untuk calon mahasiswa Politeknik Astra, ketika mencari informasi terkait proses pendaftaran mahasiswa baru maupun terkait Politeknik Astra secara umum. Proses analisis dan perancangan sistem dilakukan, dimulai dengan studi literatur. Hasil dari studi literatur dipilihlah Framework RASA yang akan digunakan dalam pengembangan chatbot. Framework RASA memiliki performa yang baik karena memiliki Rasa NLU dan Rasa CORE. Rasa NLU sebagai basis library yang membangunteraksi antara komputer dan manusia dengan menerapkan dua metode dan algoritma kecerdasan buatan yaitu pemrosesan bahasa alami dan mesin pembelajaran. Rasa NLU bertanggung jawab membuat interaksi lebih nyata, pengguna layanan akan merasakan interaksi langsung seperti dengan manusia bukan dengan komputer. Rasa CORE juga berperan dalam membuat interaksi terasa nyata, dengan mengatur interaksi dialog antara antara bot (komputer dibalik chatbot) dengan pengguna. Framework Rasa juga bersifat open source sehingga memiliki adaptabilitas yang tinggi ketika diperlukan modifikasi untuk menyesuaikan kebutuhan bisnis yang ada. Proses pengembangan sistem dilanjutkan dengan melakukan analisis dan perancangan sistem informasi penunjang. Sistem informasi penunjang chatbot ini dibangun untuk mengakomodir kebutuhan proses CRUD (Create, Read, Update dan Delete) dari pertanyaan – respon yang nantinya dipelajari oleh chatbot sebelum dapat berinteraksi seperti manusia. Sistem informasi penunjang ini membantu penyesuaian konfigurasi chatbot dalam merespon pertanyaan sehingga operasional kebutuhan tersebut dapat mudah dilakukan oleh admin tanpa latar belakang IT. Hasil dari penelitian ini adalah kebutuhan sistem yang direpresentasikan pada use case diagram dan flowchart lalu pemilihan pipeline NLU untuk chatbot, arsitektur sistem, perancangan database dalam bentuk physical data model, dan perancangan desain antarmuka (mockup) sistem penunjang chatbot framework RASA.

 

Abstract

Chatbots have become essential in business that requires interaction with customers in real-time and 24 hours. The requirements have become a necessity in Polytechnic Astra especially during the acceptance period of new students. Chatbot can be an interactive provider of information to prospective students of Polytechnic Astra who are looking information about the registration process or information related to Polytechnic Astra in general. The analysis and design process are conducted, starting with study literature.  The results of the literature study, the RASA Framework were chosen as a tool to develop chatbots. RASA Framework performs well with the Rasa NLU and Rasa Core. Rasa NLU as a base library to build interactions between computers and humans using artificial intelligence. Rasa NLU is responsible for making interaction much real, like direct interaction with humans. Rasa core is a base library to regulate the interaction dialogue between chatbots and users. The Rasa Framework is also open source, so it has high adaptability to be modified to suit existing business needs. This supporting information system help to adjust the configuration chatbot in responding to questions, so that the operational can be easily carried out by the admin without IT background. The results of this research are the system requirements represented in use case diagrams and flowcharts and the selection of NLU pipeline for chatbots, the system architecture, the database design in the form of physical data models, and the interface design (mockup) for the chatbot framework support system RASA.

Downloads

Download data is not yet available.

Referensi

ADAMOPOULOU, E. AND MOUSSIADES, L., 2020. Machine Learning with Applications Chatbots : History , technology , and applications. Machine Learning with Applications, [online] 2(July), p.100006. https://doi.org/10.1016/j.mlwa.2020.100006.

AHMAD, N.A., HAMID, M.H.C. AND ZAINAL, A., 2018. Review of Chatbots Design Techniques. International Journal of Computer Applications, 181(August).

BOCKLISCH, T., FAULKNER, J., PAWLOWSKI, N. AND NICHOL, A., 2017. Rasa : Open Source Language Understanding and Dialogue Management. pp.1–9.

BRAUN, D. AND LANGEN, M., 2017. Evaluating Natural Language Understanding Services for Conversational Question Answering Systems. (August), pp.174–185.

CALDARINI, G., JAF, S. AND MCGARRY, K., 2022. A Literature Survey of Recent Advances in Chatbots. Information, 1, pp.1–24.

GKINKO, L. AND ELBANNA, A., 2022. The appropriation of conversational AI in the workplace : A taxonomy of AI. International Journal of Information Management. [online] https://doi.org/10.1016/j.ijinfomgt.2022.102568.

HARMS, J., KUCHERBAEV, P., BOZZON, A. AND HOUBEN, G., 2019. Approaches for Dialog Management in Conversational Agents. IEEE Internet Computing, 23, pp.13–22. https://doi.org/10.1109/MIC.2018.2881519.

JANSSEN, A., RODRÍGUEZ, D., PASSLICK, J. AND BREITNER, M.H., 2022. How to Make chatbots productive – A user-oriented implementation framework. International Journal of Human - Computer Studies, [online] 168(September), p.102921. https://doi.org/10.1016/j.ijhcs.2022.102921.

KHAN, F.S., MUSHABBIR, M. AL, IRBAZ, M.S. AND NASIM, A. AL, 2021. End-to-End Natural Language Understanding Pipeline for Bangla Conversational Agents. International Conference on Machine Learning and Applications. https://doi.org/https://doi.org/10.48550/arXiv.2107.05541.

MALAMAS, N., SYMEONIDIS, A., MALAMAS, N. AND SYMEONIDIS, A., 2021. ScienceDirect Embedding Embedding Rasa Rasa in in edge edge Devices : Devices : Capabilities Capabilities and and Limitations Limitations. Procedia Computer Science, [online] 192(2019), pp.109–118. https://doi.org/10.1016/j.procs.2021.08.012.

MEKNI, M., 2021. An Artificial Intelligence Based Virtual Assistant Using Conversational Agents. Journal of Software Engineering and Applications, 14, pp.455–473. https://doi.org/10.4236/jsea.2021.149027.

MULYONO, J.A., 2022. Evaluation of Customer Satisfaction on Indonesian Banking Chatbot Services During the COVID-19 Pandemic. CommIT Journal 16(1), 16(1), pp.69–85.

NIMAVAT, K. AND TUSHAR, P., 2017. Chatbots : An Overview Types , Architecture , Tools and Future Possibilities. 5(07), pp.1019–1024.

RANOLIYA, B.R., RAGHUWANSHI, N. AND SINGH, S., 2017. Chatbot for university related FAQs. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Udupi.pp.1525–1530. https://doi.org/10.1109/ICACCI.2017.8126057.

RIDGE, K., 1997. Critical Tokenization and its Properties. Association For Computational Linguistics.

SHOLAHUDDIN, M.R. AND ATQIYA, F., 2021. Sistem Tanya Jawab Konsultasi Shalat Berbasis RASA Natural Language Understanding ( NLU ). Jurnal Pendidikan Multimedia, 3(2), pp.93–102. https://doi.org/10.17509/edsence.v3i2.38732.

SOMMERVILLE, I.,2017 Software Engineering. 9th ed. Pearson.

WINDIATMOKO, Y., HIDAYATULLAH, A.F. AND RAHMADI, R., 2009. Developing FB Chatbot Based on Deep Learning Using RASA Framework for University Enquiries. nternational Conference on Information Technology and Digital Applications. https://doi.org/https://doi.org/10.1088/1757-899X/1077/1/012060.

Diterbitkan

14-04-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Analisis dan Perancangan Aplikasi Chatbot Menggunakan Framework Rasa dan Sistem Informasi Pemeliharaan Aplikasi (Studi Kasus: Chatbot Penerimaan Mahasiswa Baru Politeknik Astra). (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(2), 291-300. https://doi.org/10.25126/jtiik.20231026409