Seleksi Fitur Menggunakan Hybrid Binary Grey Wolf Optimizer untuk Klasifikasi Hadist Teks Arab
DOI:
https://doi.org/10.25126/jtiik.2023106375Abstrak
Seleksi fitur pada teks Arab merupakan tugas yang menantang karena sifat Bahasa Arab yang kompleks dan kaya. Dala klasifikasi hadist teks Arab membutuhkan seleksi fitur, karena hadist teks Arab berbeda dengan dokumen teks arab. Hadist teks Arab memiliki sanat dan matan yang menjadi pertimbangan dalam klasifikasi hadist teks arab. Penelitian ini mengusulkan metode seleksi fitur menggunakan Hybrid Binary Grey Wolf Optimizer untuk klasifikasi hadist teks arab. Metode HBGWO mengkombinasikan kemampuan pencarian lokal atau eksplorasi pyg dimiliki BGWO, dan kemampuan pencarian di sekitar solusi terbaik atau eksploitasi yang dimiliki PSO. Data set yang digunakan berupa teks Arab diambil dari islambook.com. yang terdiri dari lima kitab yaitu Shahih Bukhari, Shahih Muslim, Sunan Ibnu Majah, Sunan Abu Dawud dan Suann at-Tirmidzi. Pada kumpulan kitab tersebut diambil 5 kelas yaitu Tuhid, Sholat, Zakat, Puasa dan Haji berjumlah 844. Hasil penelitian menunjukkan bahwa pemilihan fitur BGWOPSO dengan mencari fungsi fitnes dan klasifikasi menggunakan SVM mendapatkan 84%, dapat mengungkapkan kinerja yang unggul dibandingkan dengan menggunakan klasifikasi KNN 76% dalam soal mengklasifikasikan teks hadits Arab dengan data yang tidak seimbang.
Abstract
Feature selection in Arabic text is a challenging task due to the complex and rich nature of Arabic. In the classification of Arabic text hadith requires feature selection, because Arabic text hadith is different from Arabic text documents. Arabic text hadith has sanat and matan which are considered in the classification of Arabic text hadith. This study proposes a feature selection method using the Hybrid Binary Gray Wolf Optimizer for Arabic text hadith classification. The HBGWO method combines the local search or pyg exploration capabilities of the BGWO, and the search capabilities around the best solutions or exploits that PSO has. The data set used in the form of Arabic text is taken from islambook.com. which consists of five books, namely Sahih Bukhari, Sahih Muslim, Sunan Ibn Majah, Sunan Abu Dawud and Suann at-Tirmidhi. In this collection of books, 5 classes were taken, namely Tuhid, Prayer, Zakat, Fasting and Hajj totaling 844. The results showed that the selection of BGWOPSO features by looking for fitness functions and classification using SVM obtained 84%, can reveal superior performance compared to using KNN classification 76% in terms of classifying Arabic hadith texts with unbalanced data.
Unduhan
Referensi
HAMOUDA CHANTAR, M. M., 2019. Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Computing and Applications.
NARINDER SINGH, S. S., 2017. Hybrid Algorithm of Particle Swarm Optimization dan Gray Wolf Optimizer untuk Meningkatkan Performa Konvergensi. Journal of Applied Mathematics.
LOKESH KUMAR PANWARA, S. R., 2018. Binary Grey Wolf Optimizer for large scale unit commitment problem. Swarm and Evolutionary Computation 38 , 251–266.
N. SINGH, S. S., 2017. A novel hybrid GWO-SCA approach for optimization problems. Engineering Science and Technology, an International Journal, 1586-1601.
HELENA NURRAMDHANI IRMANDA, R. A., 2020. Klasifikasi Jenis Pantun dengan Metode Support Vector Machines (SVM). JURNAL RESTI, 915 - 922.
CHANTAR, H. K., 2013. New Techniques for Arabic Document Classification. PhD: Thesis.
E. EMARY, H. M., 2016. Binary grey wolf optimization approaches for feature selection. Neurocomputing, 371-381 .
R. PURUSHOTHAMAN, S. R., 2020. Hybridizing Gray Wolf Optimization (GWO) with Grasshopper Optimization Algorithm (GOA) for text feature selection and clustering. Applied Soft Computing Journal, 106651.
MIRJALILI, S., 2016. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Systems, 120-133.
LI-YEHCHUANG, H.-W. C.-J.-H., 2008. Improved binary PSO for feature selection using gene expression data. Computational Biology and Chemistry, 29-38.
M. ALI FAUZI, A. Z., 2017. Arabic Book Retrieval using Class and Book Index Based Term Weighting. International Journal of Electrical and Computer Engineering (IJECE), 3705-3711.
ABDULLAH SAEED GHAREB, A. A., 2016. Hybrid feature selection based on enhanced genetic algorithm for text categorization. Expert Systems with Applications, 31-47.
MEHAK KOHLI, S., 2018. Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering, 458-472.
JUN YAN, B. Z., 2006. Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing. IEEE Transactions on Knowledge and Data Engineering, 320 - 333.
GERARD SALTON, C. B., 1988. Term-weighting approaches in automatic text retrieval. Information Processing & Management, 513-523.
A.E. EIBEN, C. S., 1998. On evolutionary exploration and exploitation. Fundamenta Informaticae, 1-16.
SEYEDALI MIRJALILI, S. M., 2014. Grey Wolf Optimizer. Advances in Engineering Software, 46-61.
J. KENNEDY, R. E., 1995. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia: IEEE.
MITCHELL, T., 1997. Machine learning. Boston: McGraw Hill.
IRKHAM WIDHI SAPUTRO, B. W., 2019. Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa. CREATIVE INFORMATION TECHNOLOGY JOURNAL, 1.
QASEM AL-TASHI, S. J., 2019. Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection. IEEE, 39496 - 39508.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Jurnal Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).