Mapreduce dalam Layanan Transcoding
DOI:
https://doi.org/10.25126/jtiik.2023106310Abstrak
Penyediaan file video dengan bitrate bervariasi menjadi syarat utama bagi layanan Video On Demand yang menerapkan adaptive streaming. Hal tersebut dilakukan dengan transcoding yang menghasilkan video dengan multi-bitrate. Proses multi-bitrate transcoding membutuhkan waktu yang tidak singkat. Lama durasi waktunya sebanding dengan besarnya bitrate, frame size dan frame rate. Untuk mempersingkat durasi transcoding, dibuat sebuah prototipe layanan transcoding dengan menerapkan Mapreduce. Layanan transcoding dengan Mapreduce terdiri dari satu komputer master dan beberapa komputer worker yang terhubung dalam satu LAN. Dengan dikoordinir oleh komputer master, komputer-komputer worker mengerjakan proses Map dan Reduce. Di dalam proses Map dilakukan transcoding terhadap segmented videos. Di dalam proses Reduce dilakukan penggabungan segmen-segmen video yang telah di-transcode dengan parameter/key (bitrate, frame size, dan frame rate) yang sama menjadi satu video yang utuh. Prototipe layanan transcoding dibuat menggunakan Library FFMPEG untuk transcoding, SCP untuk transfer file, RPC untuk komunikasi antar komputer. Di dalam pengujian prototipe, jumlah komputer worker ditentukan sebanyak 7 buah. Kinerja layanan transcoding sangat memuaskan dengan rata-rata efektifitas transcoding sebesar 71,3% dibandingkan dengan transcoding menggunakan satu komputer.
Abstract
The provision of video files with varying bitrates is the main requirement for Video On Demand services that implement adaptive streaming. Transcoding that produces multiple bitrates achieves that. Multi-bitrate transcoding can take a longer time. That duration is comparable with the large of the video's bitrates, frame sizes, and frame rates. A transcoding service prototype was created based on Mapreduce to shorten the duration. Transcoding service using Mapreduce consists of several computers connected to a LAN, one as master and the other as worker computers. The master coordinates the workers to do the Map and Reduce process. In the Map process, workers transcode the segmented videos. In the Reduce process, workers merge all transcoded video segments with the same key or parameters (bitrate, frame size, and frame rate) into a single video. The transcoding service prototype was created using the FFMPEG library for transcoding, SCP for file transfer, and RPC for communication between computers. In the testing stage, the number of workers is 7 computers. Service performance is very satisfactory, with average transcoding effectiveness of 71,3% compared to transcoding using a single computer.
Downloads
Referensi
APJII, 2020. Laporan Survei Internet APJII 2019 – 2020. Asosiasi Penyelenggara Jasa Internet Indonesia, [online] 2020, pp.1–146. Available at: <https://apjii.or.id/survei>.
CHANG, Z.H., JONG, B.F., WONG, W.J. AND WONG, M.L.D., 2016. Distributed video transcoding on a heterogeneous computing platform. In: 2016 IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2016. Institute of Electrical and Electronics Engineers Inc.pp.444–447.
GUTIÉRREZ-AGUADO, J., PEÑA-ORTIZ, R., GARCÍA-PINEDA, M. AND CLAVER, J.M., 2020. Cloud-based elastic architecture for distributed video encoding: Evaluating H.265, VP9, and AV1. Journal of Network and Computer Applications, 171(July), p.102782.
HUH, J., KIM, Y.H. & JEONG, J., 2019. Ultra-High Resolution Video Distributed Transcoding System Using Memory-based High-speed Data Distribution Method. In: 34th International Technical Conference on Circuits/Systems, Computers and Communications,
ITC-CSCC 2019. Institute of Electrical and Electronics Engineers Inc.
JAIN, N., SHRIVASTAVA, H. & MOGHE, A.A., 2020. Production-ready environment for HLS Player using FFmpeg with automation on S3 Bucket using Ansible. 2nd International Conference on Data, Engineering and Applications, IDEA 2020, pp.26–29.
JIANG, Q., LEE, Y.C. & ZOMAYA, A.Y., 2019. Scalable video transcoding in public clouds. Proceedings - 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2019, pp.70–75.
KIRALY, S. & SZEKELY, S., 2018. Analysing RPC and Testing the Performance of Solutions. Informatica, [online] 42(4), pp.555–561. Available at: <https://www.informatica.si/index.php/informatica/article/view/1510> [Accessed 13 Sep. 2022].
KRISTIADI, D. & MARWIYATI, 2021. Adaptive Streaming Server dengan FFMPEG dan Golang. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(3), pp.413–420.
LIU, Y. & YUAN, J., 2018. Spark platform based video transcoding. EAI International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM), 2017-September.
LIU, Z., CAI, L., CHEN, W. & CHEN, M., 2016. Parallel video transcoding using Hadoop MapReduce. Journal of Network Computing and Applications, [online] 1(1), pp.7–11. Available at: <http://www.clausiuspress.com/article/15.html> [Accessed 10 May 2022].
OZER, J., 2018. AV1: A First Look. [online] Available at: <https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/AV1-A-First-Look-127133.aspx> [Accessed 9 Apr. 2020].
REZNIK, Y.A., LI, X., LILLEVOLD, K.O., JAGANNATH, A. & GREER, J., 2019. Optimal Multi-Codec Adaptive Bitrate Streaming. 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), [online] pp.348–353. Available at: <https://ieeexplore.ieee.org/document/8795046/>.
SAMETI, S., WANG, M. & KRISHNAMURTHY, D., 2018. Stride: Distributed Video Transcoding in Spark. 2018 IEEE 37th International Performance Computing and Communications Conference, IPCCC 2018.
SONG, C., SHEN, W., SUN, L., LEI, Z. & XU, W., 2014. Distributed video transcoding based on MapReduce. 2014 IEEE/ACIS 13th International Conference on Computer and Information Science, ICIS 2014 - Proceedings, pp.309–314.
TRATTNIG, A., TIMMERER, C. & MUELLER, C., 2018. Investigation of YouTube regarding content provisioning for HTTP adaptive streaming. Proceedings of the 23th ACM Workshop on Packet Video, PV 2018, pp.60–65.
YOUTUBE, 2022. YouTube for Press. [online] Available at: <https://blog.youtube/press/> [Accessed 17 Jan. 2022].
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).