EpCare: Prototipe Sistem Detektor Pre-Iktal Pasien Epilepsi Berbasis Fitur CSI dari Sinyal EKG 1 Kanal Menggunakan AD8232

Penulis

  • Diah P. Wulandari Institut Teknologi Sepuluh Nopember Surabaya, Surabaya
  • Arief Kurniawan Institut Teknologi Sepuluh Nopember Surabaya, Surabaya
  • Alvin Nathanael Institut Teknologi Sepuluh Nopember Surabaya, Surabaya
  • Santi W. Purnami Institut Teknologi Sepuluh Nopember Surabaya, Surabaya
  • Anda L. Juniani Politeknik Perkapalan Negeri Surabaya, Surabaya
  • Wardah R. Islamiyah Universitas Airlangga Surabaya, Surabaya

DOI:

https://doi.org/10.25126/jtiik.20231015862

Abstrak

Kejang epilepsi dapat terjadi di sembarang waktu dan tempat, dan dalam kondisi tertentu dapat menyebabkan cedera fatal. Oleh karena itu, kebutuhan akan perangkat wearable yang dapat mengirimkan peringatan kepada pengguna akan kejang yang akan datang adalah penting. Perangkat ini harus dapat merasakan kelainan pada sinyal biomedis pengguna dan mengirimkan peringatan sebelum kejang. Penelitian ini mengembangkan sistem yang mendeteksi kondisi pre-iktal pasien epilepsi berdasarkan fitur Cardiac Sympathetic Index (CSI) dari sinyal Elektrokardiogram (EKG). Listrik jantung pasien diukur menggunakan 3 elektroda yang dihubungkan ke AD8232 untuk mewakili sinyal 1 kanal. Algoritma Pan-Tompkins diimplementasikan untuk mendapatkan interval RR dari sinyal EKG. Kemudian fitur CSI dihitung berdasarkan nilai RR-interval. Distribusi setiap 100 interval RR dijadikan sebagai dasar untuk menentukan nilai ambang batas CSI. Ketika nilai CSI melebihi ambang batas ini, sistem akan mengirimkan peringatan ke aplikasi seluler, yang disebut EpCare. Eksperimen dilakukan pada dua kelompok data, yaitu kelompok data primer dari non-penderita epilepsi dan kelompok data sekunder dari penderita epilepsi. F-measure dari eksperimen yang menggunakan ambang batas dari orang normal sebesar 0.64, sedangkan F-measures dari eksperimen yang menggunakan ambang batas individual penderita epilepsy sebesar 0.50.

 

Abstract

Epileptic seizures may occur at anytime and anywhere, and in certain conditions may lead to fatal injury. Therefore, the need for wearable device that can alert user to an impending seizure is important. This device should be able to sense abnormality in user’s biomedical signals and send alert prior to seizure. This research develops a system that detects pre-ictal condition of epilepsy patient based on Cardiac Sympathetic Index (CSI) feature from Electrocardiogram (ECG) signals. Patient’s heart electricity is measured using 3 electrodes which are connected to AD8232 to represent 1 channel signal. Pan-Tompkins algorithm is implemented to obtain RR intervals of ECG signals. Then, CSI feature is calculated based on the values of RR-intervals. A distribution of every 100 RR-intervals is made as basis to determine a threshold value of CSI. When CSI value exceeds this threshold, system will send alert to a mobile application, called EpCare. Experiments were conducted on two groups of data, which are primary one from non-epileptic persons, and secondary one from epileptic patients. F-measures of experiments used threshold of non-epileptic person is 0.64, while F-measures of experiments used individual threshold of epileptic person is 0.50. 


Downloads

Download data is not yet available.

Referensi

AL-AWEEL, I., KRISHNAMURTHY, K., HAUSDORFF, J., MIETUS, J., IVES, J., BLUM, A., SCHOMER, D., & GOLDBERGER, A., 1999. Postictal heart rate oscillations in partial epilepsy. Neurology, vol. 53, no. 7, pp. 1590-1592.

EGGLESTON, K. S., OLIN, B. D., & FISHER, R. S., 2014. Ictal tachycardia: The head-heart connection. Seizure, vol. 23, no. 7, pp. 496-505.

GHOSH, A., DAS, T., SARKAR, A., & BASAK, P., 2017. Pre-ictal epileptic seizure prediction based on ECG signal analysis. 2nd International Conference for Convergence in Technology (I2CT), pp. 920-925.

GOLDBERGER, A., AMARAL, L., GLASS, L., HAUSDORFF, J., IVANOV, P. C., MARK, R., MIETUS, J. E., MOODY, G. B., PENG, C. K., & STANLEY, H. E., 2000. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online], vol. 101, no. 23, pp. e215-e220.

ISLAMIYAH, WARDAH R., dkk. Identification of Epilepsy Phase Based on Time Domain Feature Using ECG Signals. In: 2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). IEEE, 2020. p. 1-6.

JEPPESEN, J., FUGLSANG‐FREDERIKSEN, A., BRUGADA, R., PEDERSEN, B., RUBBOLI, G., JOHANSEN, P., & BENICZKY, S. 2014. Heart rate variability analysis indicates preictal parasympathetic overdrive preceding seizure‐induced cardiac dysrhythmias leading to sudden unexpected death in a patient with epilepsy. Epilepsia, 55(7), e67-e71.

JEPPESEN, J., BENICZKY, S., JOHANSEN, P., SIDENIUS, P., & FUGLSANG- FREDERIKSEN, A., 2015. Detection of epileptic seizures with a modified heart rate variability algorithm based on Lorenz plot. Seizure, vol. 24, pp. 1–7.

JONES, L. A. & THOMAS, R. H., 2017. Sudden death in epilepsy: Insights from the last 25 years. Seizure, vol. XLIV, pp. 232-236.

KOLODZIEJ, M., MAJKOWSKI, A., TARNOWSKI, P., RAK, R. J., & RYSZ, A. 2021. A new method of cardiac sympathetic index estimation using a 1D-convolutional neural network. Bulletin of the Polish Academy of Sciences. Technical Sciences, 69(3).

LIU, F., WEI, S., LI, Y., JIANG, X., ZHANG, Z., ZHANG, L., & LIU, C. 2017. The accuracy on the common Pan-Tompkins based QRS detection methods through low-quality electrocardiogram database. Journal of Medical Imaging and Health Informatics, 7(5), 1039-1043.

Mayo Clinic, 2019. Epilepsy - Symptoms and causes. [Online]. https://www.mayoclinic.org/diseases-conditions/epilepsy/symptomscauses/syc-20350093. [Diakses 20 November 2021].

PAN, J., & TOMPKINS, W. J., 1985. A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230-236.

PICKUS, S., 2017. HRV. [Online]. Tersedia di: https://github.com/pickus91/HRV/blob/master/panTompkins.py.

RAMGOPAL, S., THOME-SOUZA, S., JACKSON, M., KADISH, N. E., FERN´ANDEZ, I. S., KLEHM, J., BOSL, W., REINSBERGER, C., SCHACHTER, S. & LODDENKEMPER, T., 2014. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy & Behavior, vol. XXXVII, pp. 291-307.

SUBRAMANIAN, B., 2017. ECG signal classification and parameter estimation using multiwavelet transform. Biomedical Research, vol. 28, no. 7.

TOICHI, M., SUGIURA, T., MURAI, T. & SENGOKU, A., 1997. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R–R interval. Journal of the Autonomic Nervous System, 62(1-2), pp.79-84.

VAN ELMPT, W. J. , NIJSEN, T. M., & GRIEP, P. A. A. J. B., 2006. A model of heart rate changes to detect seizures in severe epilepsy. Seizure, vol. 15, no. 6, pp. 366-375.

WILLIAMS, L. & WILKINS, 2006. ECG Interpretation: An Incredibly Easy! Pocket Guide, Lippincott Williams & Wilkins.

World Health Organization, 2019. Epilepsy. [Online]. Tersedia di: https://www.who.int/news-room/fact-sheets/detail/epilepsy. [Diakses 20 November 2021]

WULANDARI, Diah P., dkk. Visualization of Epilepsy Patient’s Brain Condition based on Spectral Analysis of EEG Signals using Topographic Mapping. In: 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM). IEEE, 2018. p. 7-13.

WULANDARI, Diah P., dkk. Epileptic Seizure Detection Based on Bandwidth Features of EEG Signals. Procedia Computer Science, 2019, 161: 568-576.

Diterbitkan

28-02-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

EpCare: Prototipe Sistem Detektor Pre-Iktal Pasien Epilepsi Berbasis Fitur CSI dari Sinyal EKG 1 Kanal Menggunakan AD8232. (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(1), 67-76. https://doi.org/10.25126/jtiik.20231015862