Deteksi Pneumonia Menggunakan Citra Sinar-X Paru berbasis Residual Network


Muhammad Adzkia, Firzal Arland, Agung Wahyu Setiawan


Fokus dari studi ini adalah membandingkan kinerja Mask R-CNN dengan ResNet-50 & 101 sebagai backbone pada deteksi pneumonia menggunakan citra Sinar-X paru. Selain itu, juga dibandingkan pengaruh augmentasi data berupa rotasi dan refleksi serta pengaruh teknik perbaikan kualitas citra menggunakan CLAHE pada kinerja deteksi pneumonia. Set data yang digunakan pada studi ini berjumlah 26.684 citra Sinar-X paru yang diambil dari situs Kaggle RSNA Challenge. Terdapat empat parameter kinerja deteksi yang digunakan, yaitu akurasi; presisi; sensitivitas; dan spesifisitas. Meskipun ResNet-50 backbone yang memiliki 50 lapisan konvolusi, akan tetapi kinerja deteksi yang dihasilkan lebih baik dibandingkan dengan ResNet-101 yang memiliki 101 lapisan konvolusi. Selain itu, ResNet-50 backbone dengan augmentasi data berupa rotasi dan refleksi pada set data citra yang diperbaiki kualitasnya menggunakan CLAHE memberikan kinerja yang paling baik. Nilai akurasi yang diperoleh mencapai 76% dengan presisi 62%, spesifisitas 74% dan sensitifitas 67%. Pada studi ini, terlihat bahwa peningkatan jumlah lapisan konvolusi tidak berpengaruh terhadap peningkatan kinerja deteksi. Sebagai tambahan, kinerja deteksi pneumonia menggunakan Sinar-X paru berbasis ResNet-50 backbone dapat ditingkatkan dengan menambahkan prapemrosesan berupa augmentasi data serta perbaikan kualitas citra menggunakan CLAHE.



The focus of this study is to compare the performance of the Mask R-CNN using ResNet-50 & 101 backbone on pneumonia detection using a chest X-ray image. In addition, the effect of data augmentation in the form of rotation and reflection was also compared. Furthermore, the effect of the image enhancement technique using CLAHE on pneumonia detection is performed. In total, 26,684 chest X-ray images are used. These images were downloaded from the Kaggle RSNA Challenge website. There are four parameters are used to evaluate the detection performance, i.e., accuracy; precision; sensitivity; and specificity. Although ResNet-50 backbone has 50 convolutional layers, the detection performance is better than ResNet-101 which has 101 convolution layers. In addition, the ResNet-50 backbone with data augmentation and image enhancement using CLAHE provides the best performance. The accuracy of 76%, the precision of 62%, specificity of 74%, and sensitivity of 67% are obtained using this proposed method. In this study, the increase in the number of convolutional layers has no effect on the detection performance. In addition, the performance of pneumonia detection using ResNet-50 backbone using chest X-rays image can be improved using data augmentation and image quality enhancement using CLAHE.


Teks Lengkap:



CHA, S.-M., LEE, S.-S. & KO, B., 2021. Attention-Based Transfer Learning for Efficient Pneumonia Detection in Chest X-ray Images. Applied Sciences, [online] 11(3), p.1242. Available at: [Accessed 2 May 2021].

DEY, N., ZHANG, Y.D., RAJINIKANTH, V., PUGALENTHI, R. & RAJA, N.S.M., 2021. Customized VGG19 Architecture for Pneumonia Detection in Chest X-Rays. Pattern Recognition Letters, 143, pp.67–74.

HE, K., GKIOXARI, G., DOLLÁR, P. & GIRSHICK, R., 2020. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), pp.386–397. 10.1109/TPAMI.2018.2844175

HILMIZEN, N., BUSTAMAM, A. & SARWINDA, D., 2020. The Multimodal Deep Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images. In: 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2020. Institute of Electrical and Electronics Engineers Inc.pp.26–31.

JAKHAR, K. & HOODA, N., 2018. Big data deep learning framework using keras: A case study of pneumonia prediction. In: 2018 4th International Conference on Computing Communication and Automation, ICCCA 2018. Institute of Electrical and Electronics Engineers Inc.

JIN, W., DONG, S., DONG, C. & YE, X., 2021. Hybrid ensemble model for differential diagnosis between COVID-19 and common viral pneumonia by chest X-ray radiograph. Computers in Biology and Medicine, 131, p.104252. 10.1016/j.compbiomed.2021.104252

KABOLI, M., 2017. To cite this version : HAL Id : hal-01575126 A Review of Transfer Learning Algorithms Mohsen Kaboli.

LABHANE, G., PANSARE, R., MAHESHWARI, S., TIWARI, R. & SHUKLA, A., 2020. Detection of Pediatric Pneumonia from Chest X-Ray Images using CNN and Transfer Learning. In: Proceedings of 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things, ICETCE 2020.

Institute of Electrical and Electronics Engineers Inc.pp.85–92.

AL MAMLOOK, R.E., CHEN, S. & BZIZI, H.F., 2020. Investigation of the performance of Machine Learning Classifiers for Pneumonia Detection in Chest X-ray Images. In: IEEE International Conference on Electro Information Technology. IEEE Computer Society.pp.98–104. 10.1109/EIT48999.2020.9208232

MESKÓ, B. & GÖRÖG, M., 2020. A short guide for medical professionals in the era of artificial intelligence. npj Digital Medicine, Available at: [Accessed 30 Apr. 2021].

AL MUBAROK, A.F., DOMINIQUE, J.A.M. & THIAS, A.H., 2019. Pneumonia detection with deep convolutional architecture. In: Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019. Institute of Electrical and Electronics Engineers Inc.pp.486–489.

NEFOUSSI, S., AMAMRA, A. & AMAROUCHE, I.A., 2021. A Comparative Study of Chest X-Ray Image Enhancement Techniques for Pneumonia Recognition. [online] Springer, Cham.pp.276–288. Available at: [Accessed 3 May 2021].

RAHMAN, T., KHANDAKAR, A., QIBLAWEY, Y., TAHIR, A., KIRANYAZ, S., KASHEM, S.B.A., ISLAM, M.T., MAADEED, S. AL, ZUGHAIER, S.M., KHAN, M.S. & CHOWDHURY, M.E.H., 2020. Exploring the effect of image enhancement techniques on COVID‐19 detection using chest X‐rays images.arXiv,.

SHIH, G., WU, C.C., HALABI, S.S., KOHLI, M.D., PREVEDELLO, L.M., COOK, T.S., SHARMA, A., AMOROSA, J.K., ARTEAGA, V., GALPERIN-AIZENBERG, M., GILL, R.R., GODOY, M.C.B., HOBBS, S., JEUDY, J., LAROIA, A., SHAH, P.N., VUMMIDI, D., YADDANAPUDI, K. & STEIN, A., 2019. Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia. Radiology: Artificial Intelligence, [online] 1(1), p.e180041. Available at: [Accessed 3 May 2021].

SIDDHARTHA, M. & SANTRA, A., 2020. COVIDLite: A depth-wise separable deep neural network with white balance and CLAHE for detection of COVID-19. arXiv.

SINGH, N., SHARMA, R. & KUKKER, A., 2019. Wavelet Transform Based Pneumonia Classification of Chest X- Ray Images. In: 2019 International Conference on Computing, Power and Communication Technologies, GUCON 2019. [online] pp.540–545. Available at: [Accessed 2 May 2021].

UMRI, B.K., WAFA AKHYARI, M. & KUSRINI, K., 2020. Detection of COVID-19 in Chest X-ray Image using CLAHE and Convolutional Neural Network. In: 2020 2nd International Conference on Cybernetics and Intelligent System, ICORIS 2020. Institute of Electrical and Electronics Engineers Inc.

WANG, X., PENG, Y., LU, L., LU, Z., BAGHERI, M. & SUMMERS, R.M., 2017. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. Institute of Electrical and Electronics Engineers Inc.pp.3462–3471.

YU, X., WANG, S.H. & ZHANG, Y.D., 2021. CGNet: A graph-knowledge embedded convolutional neural network for detection of pneumonia. Information Processing and Management, 58(1), p.102411.

XIANG, Z., 2018. Simple Understanding of Mask RCNN. Available at : [Accessed 2 May 2021]