Peningkatan Performa Pengelompokan Siswa Berdasarkan Aktivitas Belajar pada Media Pembelajaran Digital Menggunakan Metode Adaptive Moving Self-Organizing Maps

Penulis

  • Onky Prasetyo Universitas Brawijaya, Malang
  • Ahmad Afif Supianto Universitas Brawijaya, Malang Pusat Riset Informatika, Badan Riset dan Inovasi Nasional, Jakarta Pusat
  • Syaiful Anam Universitas Brawijaya, Malang
  • Hilman Ferdinandus Pardede Pusat Riset Informatika, Badan Riset dan Inovasi Nasional, Jakarta Pusat
  • Vicky Zilvan Pusat Riset Informatika, Badan Riset dan Inovasi Nasional, Jakarta Pusat
  • R. Budiarianto Suryo Kusumo Pusat Riset Informatika, Badan Riset dan Inovasi Nasional, Jakarta Pusat

DOI:

https://doi.org/10.25126/jtiik.2022915579

Abstrak

Digitalisasi proses pembelajaran memungkinkan untuk dihasilkannya rekaman terhadap setiap aktivitas siswa selama belajar. Rekaman yang dihasilkan tersebut dapat digunakan untuk mengelompokkan siswa berdasarkan pola dari proses belajar yang dilakukan. Hasil pengelompokkan yang peroleh dapat digunakan untuk melakukan penyesuaian komponen pembelajaran ataupun metode pembelajaran bagi siswa. Salah satu metode pengelompokan yang sering digunakan adalah Self-Organizing Maps (SOM), SOM merupakan metode jaringan syaraf tiruan dengan tujuan untuk mempertahankan topologi data ketika data input multidimensi diubah menjadi data output dengan dimensi yang lebih rendah. Neuron SOM pada dimensi input diperbaharui sepanjang proses pelatihan, sedangkan neuron pada dimensi output tidak mendapatkan pembaruan sama sekali, hal ini menyebabkan struktur neuron yang digunakan pada tahapan inisialisasi akan tetap sama hingga akhir proses pengelompokan. Pada penelitian ini menggunakan metode Adaptive Moving Self-Organizing Maps (AMSOM) yang menggunakan struktur neuron lebih fleksibel, dengan dimungkinkannya terjadi perpindahan, penambahan dan penghapusan dari neuron menggunakan data 12 assignments dari media pembelajaran MONSAKUN. Hasil penelitian menunjukkan terdapat perbedaan yang signifikan secara statistik antara nilai quantization error dan nilai topographic error dari algoritme AMSOM dengan algoritme SOM. Metode AMSOM menghasilkan rata-rata nilai quantization error 27 kali lebih kecil dan rata-rata nilai topographic error 54 kali lebih kecil dibandingkan dengan metode SOM.

Abstract

The digitization of the learning process makes it possible to produce recordings of each student's activity during learning. The resulting record can be used to group students based on the pattern of the learning process. The grouping results can be used to make adjustments to the learning components or learning methods for students. One of the most frequently used clustering methods is Self-Organizing Maps (SOM), SOM is a neural network method to maintain data topology when multidimensional input data is converted into output data with lower dimensions. The SOM neurons in the input dimension are updated throughout the training process, while the neurons in the output dimension do not get updated at all, this causes the neuron structure used in the initialization stage to remain the same until the end of the grouping process. In this study, the Adaptive Moving Self-Organizing Maps (AMSOM) method uses a more flexible neuron structure, allowing for the transfer, addition and deletion of neurons using 12 assignments of data from MONSAKUN learning media. The results showed that there was a statistically significant difference between the quantization error and the topographic error of the AMSOM algorithm and the SOM algorithm. The AMSOM method produces an average quantization error 27 times smaller and an average topographic error 54 times smaller than the SOM method.

Downloads

Download data is not yet available.

Referensi

AHMAD, N. B., ISHAK, M. K., ALIAS, U. F. & MOHAMAD, N., 2015. An Approach for E-Learning Data Analytics using SOM Clustering. Int. J. Advance Soft Compu, 7(3), pp. 94-112.

BAEZ-MONROY, V. O. & O'KEEFE, S., 2005. Modelling Incremental Learning With The Batch SOM Training Method. Rio de Janeiro, IEEE.

CABADA, R. Z., ESTRADA, M. L. B. & GARCIA, C. A. R., 2011. EDUCA: A Web 2.0 Authoring Tool For Developing Adaptive and Intelligent Tutoring Systems Using a Kohonen Network. Expert Systems with Applications.

GABRIELSSON, S. & GABRIELSSON, S., 2006. The use of Self-Organizing Maps in Recommender Systems.

HARTONO, P. & OGAWA, K., 2017. Intuitive Analysis by Visualizing Context Relevant E-learning Data. IPSJ Transactions on Conputers and Education, 3(2), pp. 20-27.

HASANAH, N., HIRASHIMA, T. & HAYASHI, Y., 2015. Investigation of Students' Performance in Monsakun Problem Posing Activity based on the Triplet Structure Model of Arithmetical Word Problems. Hanzhou, s.n., pp. 27-36.

HIRASHIMA, T., YAMAMOTO, S. & HAYASHI, Y., 2014. Triplet Structure Model of Arithmetical Word Problems. International Conference on Human Interface and the Management of Information, pp. 42-50.

HIRASHIMA, T., YOKOYAMA, T. & OKAMOTO, M., 2007. Learning by Problem-Posing as Sentence-Integration and Experimental Use. AIED, pp. 254-261.

INDRIYANI, F. & IRFIANI, E., 2019. Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means. JUITA: Jurnal Informatika, 7(2), pp. 109-113.

KITCHEN, C. M., 2009. Nonparametric vs Parametric Tests of Location in Biomedical Research. American Journal of Ophthalmology, 147(4), pp. 571-572.

NACHAR, N., 2008. The Mann‐Whitney U: A Test for Assessing Whether Two Independent Samples Come. Tutorials in Quantitative Methods for Psychology, 4(1), pp. 13-20.

PELLICER-CHENOLL, M., GARCIA-MASSO, X., MORALES, J., SERRA-ANO, P., SOLANA-TRAMUNT, M., GONZALEZ, L. M., TOCA-HERRERA, J. L., 2015. Physical activity, physical fitness and academic achievement in adolescents: a self-organizing maps approach. Health Education Research, 30(3), pp. 436-448.

SPANAKIS, G. & WEISS, G., 2016. AMSOM: Adaptive Moving Self-organizing Map for Clustering and Visualization. 8th International Conference on Agents and Artificial Intelligence.

SPANAKIS, G. & WEISS, G., 2017. Enhancing Visual Clustering Using Adaptive Moving Self-Organizing Maps (AMSOM). van den Herik J., Filipe J. (eds) Agents and Artificial Intelligence. ICAART 2016. Lecture Notes in Computer Science, Volume 10162, pp. 189-211.

SUPIANTO, A. A., HAYASHI, Y. & HIRASHIMA, T., 2017. An Investigation of Learner’s Actions in Posing Arithmetic Word. IEICE Transactions on Information and Systems, 100(11), pp. 2725-2728.

SUPIANTO, A. A., HAYASHI, Y. & HIRASHIMA, T., 2017. Process-based Assignment-Setting Change for Support of Overcoming Bottlenecks in Learning by Problem-Posing in Arithmetic Word Problems. Journal of Physics: Conference Series, 812(1).

SUWALKA, I. & AGRAWAL, N., 2018. An improved unsupervised mapping technique using AMSOM for neurodegenerative disease detection. Int. J. Computational Systems Engineering, 4(2/3), pp. 185-194.

SUWALKA, I. & AGRAWAL, N., 2019. Machine learning using AMKSOM for. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), pp. 1-7.

TATOIAN, R. & HAMEL, L., 2018. Self-Organizing Map Convergence. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 9(2), pp. 61-84.

YOUNGJIN, L., 2018. Using Self-Organizing Map and Clustering to Investigate Problem-Solving Patterns in the Massive Open Online Course: An Exploratory Study. Journal of Educational Computing Research , 0(0), pp. 1-20.

Diterbitkan

07-02-2022

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Peningkatan Performa Pengelompokan Siswa Berdasarkan Aktivitas Belajar pada Media Pembelajaran Digital Menggunakan Metode Adaptive Moving Self-Organizing Maps. (2022). Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(1), 145-154. https://doi.org/10.25126/jtiik.2022915579