Pendeteksi Citra Masker Wajah Menggunakan CNN dan Transfer Learning
DOI:
https://doi.org/10.25126/jtiik.2021865201Abstrak
Pada tahun 2021 pandemi Covid-19 masih menjadi masalah di dunia. Protokol kesehatan diperlukan untuk mencegah penyebaran Covid-19. Penggunaan masker wajah adalah salah satu protokol kesehatan yang umum digunakan. Pengecekan secara manual untuk mendeteksi wajah yang tidak menggunakan masker adalah pekerjaan yang lama dan melelahkan. Computer vision merupakan salah satu cabang ilmu komputer yang dapat digunakan untuk klasifikasi citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang memiliki performa bagus dalam klasifikasi citra. Transfer learning merupakan metode terkini untuk mempercepat waktu training pada CNN dan untuk mendapatkan performa klasifikasi yang lebih baik. Penelitian ini melakukan klasifikasi citra wajah untuk membedakan orang menggunakan masker atau tidak dengan menggunakan CNN dan Transfer Learning. Arsitektur CNN yang digunakan dalam penelitian ini adalah MobileNetV2, VGG16, DenseNet201, dan Xception. Berdasarkan hasil uji coba menggunakan 5-cross validation, Xception memiliki akurasi terbaik yaitu 0.988 dengan waktu total komputasi training dan testing sebesar 18274 detik. MobileNetV2 memiliki waktu total komputasi tercepat yaitu 4081 detik dengan akurasi sebesar 0.981.
Abstract
In 2021 the Covid-19 pandemic is still a problem in the world. Therefore, health protocols are needed to prevent the spread of Covid-19. The use of face masks is one of the commonly used health protocols. However, manually checking to detect faces that are not wearing masks is a long and tiring job. Computer vision is a branch of computer science that can be used for image classification. Convolutional Neural Network (CNN) is a deep learning algorithm that has good performance in image classification. Transfer learning is the latest method to speed up CNN training and get better classification performance. This study performs facial image classification to distinguish people using masks or not by using CNN and Transfer Learning. The CNN architecture used in this research is MobileNetV2, VGG16, DenseNet201, and Xception. Based on the results of trials using 5-cross validation, Xception has the best accuracy of 0.988 with a total computation time of training and testing of 18274 seconds. MobileNetV2 has the fastest total computing time of 4081 seconds with an accuracy of 0.981.
Downloads
Referensi
AL-SAFFAR, A.A.M., TAO, H. AND TALAB, M.A., 2017. Review of deep convolution neural network in image classification. Proceeding - 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2017, 2018-Janua, pp.26–31.
BUDIMAN, B., 2021. Pendeteksian Penggunaan Masker Wajah Dengan Metode Convolutional Neural Network. Jurnal Ilmu Komputer dan Sistem Informasi, Vol.9 No.1.
CHOLLET, F. AND & O., 2020. Keras: the Python deep learning API. [online] Keras: the Python deep learning API. Available at: <https://keras.io/> [Accessed 18 Dec. 2020].
ET AL., R.K., 2021. A Comparative Analysis of Variant Deep Learning Models for COVID-19 Protective Face Mask Detection. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), pp.2841–2848.
GE, S., LI, J., YE, Q. and LUO, Z., 2017. Detecting masked faces in the wild with LLE-CNNs. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, pp.426–434.
GOLDMAN, R.N., 1991. More matrices and transformations: Shear and pseudo-perspective. In: Graphics Gems II. Elsevier Inc.pp.338–341.
GRASSI, M. AND FAUNDEZ-ZANUY, M., 2007. Face recognition with facial mask application and neural networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4507 LNCS, pp.709–716.
HAN, W., HUANG, Z., KUERBAN, A., YAN, M. AND FU, H., 2020. A Mask Detection Method for Shoppers under the Threat of COVID-19 Coronavirus. In: Proceedings - 2020 International Conference on Computer Vision, Image and Deep Learning, CVIDL 2020. Institute of Electrical and Electronics Engineers Inc.pp.442–447.
JAGADEESWARI, C. AND THEJA, M.U., 2020. Performance Evaluation of Intelligent Face Mask Detection System with various Deep Learning Classifiers Keywords : International Journal of Advanced Science and Technology, 29(11), pp.3074–3082.
JIGNESH CHOWDARY, G., PUNN, N.S., SONBHADRA, S.K. AND AGARWAL, S., 2020. Face Mask Detection Using Transfer Learning of InceptionV3. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12581 LNCS, pp.81–90.
LARXEL, 2020. Face Mask Detection | Kaggle. [online] Available at: <https://www.kaggle.com/omkargurav/face-mask-dataset> [Accessed 1 Feb. 2021].
NAGRATH, P., JAIN, R., MADAN, A., ARORA, R., KATARIA, P. AND HEMANTH, J., 2021. SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustainable Cities and Society, 66(December 2020).
O’SHEA, K. AND NASH, R., 2015. An Introduction to Convolutional Neural Networks. [online] (November). Available at: <http://arxiv.org/abs/1511.08458>.
PAK, M. AND KIM, S., 2018. A review of deep learning in image recognition. Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT 2017, 2018-Janua, pp.1–3.
SIEGFRIED, I.M., 2020. Comparative Study of Deep Learning Methods in Detection Face Mask Utilization. PrePrint, pp.1–7.
TAN, C., SUN, F., KONG, T., ZHANG, W., YANG, C. AND LIU, C., 2018. A Survey on Deep Transfer Learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), [online] 11141 LNCS, pp.270–279. Available at: <http://arxiv.org/abs/1808.01974> [Accessed 31 May 2021].
VINITHA, V. AND VELANTINA, V., 2020. Covid-19 Facemask Detection With Deep Learning and Computer Vision. International Research Journal of Engineering and Technology (IRJET), 7(8), pp.3127–3132.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).