Perbandingan Kinerja Inception- Resnetv2, Xception, Inception-v3, dan Resnet50 pada Gambar Bentuk Wajah

Penulis

  • Fitriana Masruroh Universitas Diponegoro, Semarang
  • Bayu Surarso Universitas Diponegoro, Semarang
  • Budi Warsito Universitas Diponegoro, Semarang

DOI:

https://doi.org/10.25126/jtiik.20231014941

Abstrak

Saat ini, klasifikasi bentuk wajah banyak diterapkan dalam berbagai bidang. Dalam bidang industri fashion dapat digunakan untuk pemilihan gaya rambut, pemilihan bingkai kacamata, tata rias, dan mode lainnya. Selain itu, dalam bidang medis bentuk wajah digunakan untuk bedah plastik. Identifikasi bentuk wajah adalah tugas yang menantang karena kompleksitas wajah, ukuran, pencahayaan, usia dan ekspresi. Banyak metode yang dikembangkan untuk memberikan hasil akurasi terbaik dalam klasifikasi bentuk wajah. Deep learning menjadi tren dibidang komputer vision karena memberikan hasil yang paling baik dari pada metode sebelumnya. Makalah ini mencoba menyajikan perbandingan kinerja klasifikasi wajah dengan empat arsitektur deep learning Xception, ResNet50, InceptionResNet-v2, Inception-v3. Dataset yang digunakan berjumlah 4500 gambar yang terbagi lima kelas heart, long, oblong, square, round. Berbagai pengoptimal deep learning diantaranya; transfer learning, optimizer deep learning, dropout dan fungsi aktivasi diterapkan untuk meningkatkan kinerja model. Perbandingan antara berbagai model CNN didasarkan kinerja metrik seperti accuracy, recall, precision dan F1-score. Dengan demikian dapat disimpulkan bahwa model Inception-ResNet-V2 menggunakan fungsi aktivasi Mish dan optimizer Nadam mencapai nilai tertinggi dengan accuracy dan f1-score masing-masing 92.00%, dan penggunaan waktu 65.0 menit.

 

Abstract

Currently, face shape classification is widely applied in various fields. In the fashion industry, it can be used for hairstyle selection, eyeglass frame selection, makeup, and other modes. In the medical field, the face shape is used for plastic surgery. Identification of face shape is a challenging task due to the complexity of the face, size, lighting, age and expression. Many methods have been developed to provide the best accuracy results in the classification of face shapes. Deep learning is becoming a trend in the field of computer vision because it gives the best results than the previous method. This paper attempts to present a comparison of the performance of face classification with four deep learning architectures Xception, ResNet50, InceptionResNet-v2, Inception-v3. The dataset used is 4500 images divided into five classes heart, long, oblong, square, round. Various deep learning optimizers include; transfer learning, deep learning optimizer, dropout and activation functions are implemented to improve model performance. Comparisons between various CNN models are based on performance metrics such as accuracy, recall, precision and F1-score. Thus, it can be concluded that the Inception-ResNet-V2 model using the Mish activation function and the Nadam optimizer achieves the highest value with an accuracy and f1-score of 92.00%, and a time usage of 65.0 minutes. Thus, it can be concluded that the Inception-ResNet-V2 model using the Mish activation function and the Nadam optimizer achieves the highest value with an accuracy and f1-score of 92.00%, and a time usage of 65.0 minutes.

 


Downloads

Download data is not yet available.

Referensi

BOUGUILA, J. dan KHOCHTALI, H., 2020. Facial plastic surgery and face recognition algorithms: Interaction and challenges. A scoping review and future directions, Journal of Stomatology, Oral and Maxillofacial Surgery, 121(6), pp. 696–703.

DOZAT, T., 2016. Incorporating Nesterov Momentum into Adam, ICLR Workshop, (1), pp. 2013–2016.

FACE RECOGNITION HOMEPAGE. 2020. face-rec.org. [online] Tersedia di: <https://www.face-rec.org/databases/ > (Diakses 15 April 2021).

FAN, L., ZHANG, T., ZHAO, X., WANG, HAO., & ZHENG, M., 2019. Deep topology network: A framework based on feedback adjustment learning rate for image classification. Advanced Engineering Informatics, 42(May), p. 100935.

GOOGLE, 2021. Google Colabrotaory. [online] Tersedia di: <https://colab.research. google.com/drive/> (Diakses 17 April 2021).

CHOLLET, F. 2014. Xception: Deep Learning with Depthwise Separable Convolutions.

HE, K., ZHANG, X., REN, S., & SUN, JIAN., 2016. Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, pp. 770–778.

HE, Y. L., ZHANG, X.L., AO, W., & HUANG, J.Z., 2018. Determining the optimal temperature parameter for Softmax function in reinforcement learning. Applied Soft Computing Journal, 70, pp. 80–85.

HINTON, G. E., SRIVASTAVA, N., KRIZHEVSKY, A., SUTSKEVER, I., & SALAKHUTDINOV, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv : 1207 . 0580v1, pp. 1–18.

KINGMA, D. P., dan BA, J. L., 2015. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations. ICLR 2015 - Conference Track Proceedings, pp. 1–15.

KRIZHEVSKY, A., dan HINTON, G., 2009. Learning multiple layers of features from tiny images.(2009). Cs.Toronto.Edu, pp. 1–58.

KRIZHEVSKY, A., dan Hinton, G. E., 2012. ImageNet Classification with Deep Convolutional Neural Networks, pp. 1–9.

LIU, Y., HUANG, M.L., HUANG, W., & LIANG, J., 2017. A physiognomy based method for facial feature extraction and recognition. Journal of Visual Languages and Computing, 43, pp. 103–109.

MISRA, D., 2019. Mish: A self regularized non-monotonic neural activation function.

PASUPA, K., SUNHEM, W., & LOO, C. K., 2019. A hybrid approach to building face shape classifier for hairstyle recommender system. Expert Systems with Applications, 120, pp. 14–32.

PRAKASH, R.M., THENMOEZHI, N., & GAYATHRI, M., 2019. Face Recognition with Convolutional Neural Network and Transfer Learning. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 861–864.

RUDER, S., 2016. An overview of gradient descent Optimization, pp. 1–14.

SOKOLOVA, M., dan LAPALME, G., 2009. A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), pp. 427–437.

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., SLAKHUTDINOV, R., 2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, pp. 1929–1958.

SZEGEDY, C., VANHOUCKE, V., LOFFE, S., & SHLENS, J., 2016. Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, pp. 2818–2826.

SZEGEDY, C., LOFFE, S., & VANHOUCKE, V., 2017. Inception-v4, inception-ResNet and the impact of residual connections on learning. 31st AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 4278–4284.

TIO, A. E. D. C., 2019. Face shape classification using Inception v3.

ZAFAR, A., dan POPA, T., 2016. Face and eye-ware classification using geometric features for a data-driven eye-ware recommendation system, Proceedings - Graphics Interface, pp. 183–188.

Diterbitkan

28-02-2023

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Perbandingan Kinerja Inception- Resnetv2, Xception, Inception-v3, dan Resnet50 pada Gambar Bentuk Wajah. (2023). Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(1), 11-20. https://doi.org/10.25126/jtiik.20231014941