Deteksi Gulma Berdasarkan Warna HSV dan Fitur Bentuk Menggunakan Jaringan Syaraf Tiruan

Penulis

Hurriyatul Fitriyah, Rizal Maulana

Abstrak

Gulma merupakan tanaman pengganggu dalam lahan pertanian. Herbisida merupakan obat yang efektif membunuh gulma tersebut. Penyemprotan herbisida harus tepat sasaran kepada gulma saja dan tidak mengenai tanaman. Penelitian ini membuat sistem yang dapat mendeteksi gulma secara otomatis di antara tanaman pada lahan pertanian riil. Sistem ini menggunakan gambar lahan pertanian riil dimana tanaman tampak utuh (daun dapat lebih dari satu) yang diambil menggunakan kamera dengan posisi vertikal menghadap ke bawah. Algoritma yang dibuat menggunakan segmentasi berdasarkan warna hijau dalam ruang warna HSV untuk mendeteksi daun, baik gulma maupun tanaman pada beragam pencahayaan. Sebanyak tiga fitur bentuk domain spasial digunakan untuk membedakan gulma dengan tanaman yang memiliki karakteristik bentuk daun yang berbeda. Fitur bentuk yang digunakan adalah Rectangularity, Edge-to-Center distances function, dan Distance Transform function. Klasifikasi gulma dan tanaman menggunakan metode Jaringan syaraf tiruan (JST) yang dapat dilatih secara offline. Dari 149 tanaman yang terdeteksi dimana 70% sebagai data training, 15% data validasi dan 15% data uji, didapati akurasi pengujian sebesar 95.46%.


Abstract

Weed is a major challenge in a crop plantation. A herbicide is the most effective substance to kill this unwanted vegetation. Spraying the herbicide must be done carefully to target the weeds only. Here in this research, we develop an algorithm that detects weeds among the plants based on the shape of their leaves. The detection is based on images that were acquired using a camera. The leaves of weeds and plants were detected based on their green color using segmentation in HSV color-space as it is more effective to detect objects in various illumination. Three shape features were extracted, which are Rectangularity that is based on Rectangularity, Edge-to-Center distance function, and Distance Transform function. Those features were fed into a learning algorithm, Artificial Neural Network (ANN), to classify whether it is the plant or the weed. The testing on the weed classification in a real outdoor environment showed 95.46% accuracy using a total of 149 detected plants (70% as training data, 15%  as validation data, and 15% as testing data).


Teks Lengkap:

PDF

Referensi


APRIADI, W., SEMBODO, D. R., & SUSANTO, H. (2013). Efikasi Herbisida 2,4-D Terhadap Gulma pada Budidaya Tanaman Padi Sawah (Oruza Sativa). Jurnal Agrotek Tropika, 1(3), p.269-276. DOI: http :// dx.doi.org/ 10.23960/jat.v1i3.2040

BARUS, E. (2003). Pengendalian Gulma di Perkebunan, Efektivitas dan Efisiensi Aplikasi Herbisida. Kanisius.

BAWDEN, O., KULK, J., RUSSELL, R., MCCOOL, C., ENGLISH, A., DAYOUB, F., & PEREZ, T. (2017). Robot for weed species plant-specific management. Journal of Field Robotics, 34(6), p.1179–1199. DOI: https://doi.org/10.1002/rob.21727

BEGHIN T., COPE J.S., REMAGNINO P., BARMAN S. (2010). Shape and Texture Based Plant Leaf Classification. Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6475. Springer, Berlin, Heidelberg. DOI: https://doi.org/DOI: 10.1007/978-3-642-17691-3_32

FITRIYAH, H., SETIABUDI A., (2019). Outlier Detection in Object Counting based on Hue and Distance Transform using Median Absolute Deviation (MAD). Prosiding International Conference on Sustainable Information Engineering and Technology (SIET). DOI: https://doi.org/ DOI: 10.1109/SIET48054.2019.8985993

KADIR, M. (2007). Efektifitas Berbagai Dosis dan waktu Aplikasi Herbisida 2,4 Dimetilamina Terhadap Gulma Echinocola Colonum, Echinocloa Crusgali dan Cyperus Iria pada Padi Sawah. Jurnal Agrisistem, 3(1), p.53-49.

KADIR, A., NUGROHO, L.E., SUSANTO, A., SANTOSA, P.I. (2011). Leaf Classification Using Shape, Color, and Texture Features. International Journal of Computer Trends and Technology, 1(3), P.225-235

MANGOENSOEKARJO, S., & SOEJONO, A. (2019). Ilmu Gulma dan Pengelolaan Pada Budi Daya Perkebunan. UGM Press.

MINGQIANG, Y., KIDIYO, K. JOSEPH, R. (2008). A Survey of Shape Feature Extraction Techniques, Pattern Recognition Techniques, Technology and Applications. Peng-Yeng Yin, IntechOpen. DOI: https://doi.org/ 10.5772/6237

MOENANDIR, J. (2010). Ilmu Gulma. UB Press.

PURNAMASARI, C., TYASMORO, S. Y., & SUMARNI, T. (2017). Pengaruh Teknik Pengendalian Gulma pada Tanaman Padi (Oryza Sativa L.). Jurnal Produksi Tanaman, 5(5), p.870-879.

SARVINI, T., SNEHA, T., SUKANYA, G. G., SUSMITHA, S., & KUMARASWAMY, R. (2019). Performance Comparison of Weed Detection Algorithms. International Conference on Communication and Signal Processing. India. DOI: https://doi.org/10.1109/iccsp.2019.8698094

SLAUGHTER, D., GILES, D., & DOWNEY, D. (2007). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61(1), p.63-78. DOI: https:// doi.org/ 10.1016/ j.compag.2007.05.008

SMITH, A.R., 1978. Color gamut transform pairs. Prosiding the 5th annual conference on Computer graphics and interactive techniques. Association for Computing Machinery, p.12-19. DOI: https://doi.org/10.1145/800248.807361




DOI: http://dx.doi.org/10.25126/jtiik.2021854719