Analisis Perbandingan Algoritma SVM, KNN, dan CNN untuk Klasifikasi Citra Cuaca

Penulis

Mohammad Farid Naufal

Abstrak

Cuaca merupakan faktor penting yang dipertimbangkan untuk berbagai pengambilan keputusan. Klasifikasi cuaca manual oleh manusia membutuhkan waktu yang lama dan inkonsistensi. Computer vision adalah cabang ilmu yang digunakan komputer untuk mengenali atau melakukan klasifikasi citra. Hal ini dapat membantu pengembangan self autonomous machine agar tidak bergantung pada koneksi internet dan dapat melakukan kalkulasi sendiri secara real time. Terdapat beberapa algoritma klasifikasi citra populer yaitu K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan Convolutional Neural Network (CNN). KNN dan SVM merupakan algoritma klasifikasi dari Machine Learning sedangkan CNN merupakan algoritma klasifikasi dari Deep Neural Network. Penelitian ini bertujuan untuk membandingkan performa dari tiga algoritma tersebut sehingga diketahui berapa gap performa diantara ketiganya. Arsitektur uji coba yang dilakukan adalah menggunakan 5 cross validation. Beberapa parameter digunakan untuk mengkonfigurasikan algoritma KNN, SVM, dan CNN. Dari hasil uji coba yang dilakukan CNN memiliki performa terbaik dengan akurasi 0.942, precision 0.943, recall 0.942, dan F1 Score 0.942.

 

Abstract

Weather is an important factor that is considered for various decision making. Manual weather classification by humans is time consuming and inconsistent. Computer vision is a branch of science that computers use to recognize or classify images. This can help develop self-autonomous machines so that they are not dependent on an internet connection and can perform their own calculations in real time. There are several popular image classification algorithms, namely K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). KNN and SVM are Machine Learning classification algorithms, while CNN is a Deep Neural Networks classification algorithm. This study aims to compare the performance of that three algorithms so that the performance gap between the three is known. The test architecture is using 5 cross validation. Several parameters are used to configure the KNN, SVM, and CNN algorithms. From the test results conducted by CNN, it has the best performance with 0.942 accuracy, 0.943 precision, 0.942 recall, and F1 Score 0.942.


Teks Lengkap:

PDF

Referensi


AGARAP, A.F.M., 2018. Deep Learning using Rectified Linear Units (ReLU). arXiv, (1), pp.2–8.

AJAYI, G., 2018. Multi-class Weather Dataset for Image Classification. 1.

AN, J., CHEN, Y. AND SHIN, H., 2019. Weather Classification using Convolutional Neural Networks. In: Proceedings - International SoC Design Conference 2018, ISOCC 2018. Institute of Electrical and Electronics Engineers Inc.pp.245–246.

ANON 2016. Automotive Revolution & Perspective Towards 2030. Auto Tech Review, .

CHOLLET, F. AND & O., 2020. Keras: the Python deep learning API. [online] Keras: the Python deep learning API. Available at: [Accessed 18 Dec. 2020].

ÇOLAKOĞLU, H.B., 2019. A generalization of the Minkowski distance and a new definition of the ellipse. [online] Available at: [Accessed 29 Dec. 2020].

DOKMANIC, I., PARHIZKAR, R., RANIERI, J. AND VETTERLI, M., 2015. Euclidean Distance Matrices: Essential Theory, Algorithms and Applications. IEEE Signal Processing Magazine, [online] 32(6), pp.12–30. Available at: [Accessed 29 Dec. 2020].

ELHOSEINY, M., HUANG, S. AND ELGAMMAL, A., 2015. Weather classification with deep convolutional neural networks. Proceedings - International Conference on Image Processing, ICIP, 2015-Decem(September), pp.3349–3353.

GOLDMAN, R.N., 1991. More matrices and transformations: Shear and pseudo-perspective. In: Graphics Gems II. Elsevier Inc.pp.338–341.

GOOGLE COLAB, 2020. Welcome to Colaboratory - Colaboratory. [online] Getting Started - Introduction. Available at: [Accessed 18 Dec. 2020].

GOUTTE, C. AND GAUSSIER, E., 2005. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. Lecture Notes in Computer Science, 3408(April), pp.345–359.

IBRAHIM, M.R., HAWORTH, J. AND CHENG, T., 2019. Weathernet: Recognising weather and visual conditions from street-level images using deep residual learning. ISPRS International Journal of Geo-Information, 8(12).

JAVIDI, B., 2002. Image Recognition and Classification. Image Recognition and Classification. CRC Press.

KANG, L.W., CHOU, K.L. AND FU, R.H., 2019. Deep learning-based weather image recognition. Proceedings - 2018 International Symposium on Computer, Consumer and Control, IS3C 2018, pp.384–387.

KINGMA, D.P. AND BA, J.L., 2015. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp.1–15.

KUMAR, G. AND BHATIA, P.K., 2014. A detailed review of feature extraction in image processing systems. In: International Conference on Advanced Computing and Communication Technologies, ACCT. Institute of Electrical and Electronics Engineers Inc.pp.5–12.

LECUN, Y., BOTTOU, L., BENGIO, Y. AND HA, P., 1998. LeNet. Proceedings of the IEEE, (November), pp.1–46.

XIA, J., XUAN, D., TAN, L. AND XING, L., 2020. ResNet15: Weather Recognition on Traffic Road with Deep Convolutional Neural Network. Advances in Meteorology, 2020.

ZEILER, M.D. AND FERGUS, R., 2014. Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689 LNCS(PART 1), pp.818–833.




DOI: http://dx.doi.org/10.25126/jtiik.2021824553