Analisis Sentimen Ulasan Kedai Kopi Menggunakan Metode Naive Bayes dengan Seleksi Fitur Algoritme Genetika

Penulis

Naziha Azhar, Putra Pandu Adikara, Sigit Adinugroho

Abstrak

Di era sekarang, kedai kopi tak hanya dikenal sebagai tempat berkumpul dan menyeruput kopi saja, tetapi kedai kopi telah menjadi tempat yang nyaman untuk belajar dan bekerja. Namun, tidak semua kedai kopi memiliki kualitas yang baik sesuai dengan apa yang diharapkan pelanggan. Ulasan tentang kedai kopi dapat membantu pemilik kedai kopi untuk mengetahui bagaimana respons mengenai produk dan pelayanannya. Ulasan tersebut perlu diklasifikasikan menjadi ulasan positif atau negatif sehingga membutuhkan analisis sentimen. Terdapat beberapa tahap pada penelitian ini yaitu pre-processing untuk pemrosesan ulasan, ekstraksi fitur menggunakan Bag of Words dan Lexicon Based Features, serta mengklasifikasikan ulasan menggunakan metode Naïve Bayes dengan Algoritme Genetika sebagai seleksi fitur. Data yang digunakan pada penelitian ini sebanyak 300 data dengan 210 data sebagai data latih dan 90 data sebagai data uji. Hasil evaluasi yang didapatkan dari klasifikasi Naïve Bayes dan seleksi fitur Algoritme Genetika yaitu accuracy sebesar 0,944, precision sebesar 0,945, recall sebesar 0,944, dan f-measure sebesar 0,945 dengan menggunakan parameter Algoritme Genetika terbaik yaitu banyak generasi = 50, banyak populasi = 18, crossover rate = 1, dan mutation rate = 0.

 

Abstract

In this era, coffee shops are not only known as a place to gather and drink coffee, but also have become a comfortable place to study and work. However, not all coffee shops are in good quality according to what customers expect. Coffee shop reviews can help coffee shop owners to find out the response to their products and services. These reviews need to be classified as positive or negative reviews so that sentiment analysis is needed. There are several steps in this study, which are pre-processing to process reviews, feature extraction using Bag of Words and Lexicon Based Features, also classifying reviews using the Naïve Bayes method with Genetic Algorithm as a feature selection. The data used in this study were 300 data with 210 data as training data and 90 data as test data. Evaluation results obtained from the Naïve Bayes classification and Genetic Algorithm feature selection are 0.944 for accuracy, 0.945 for precision, 0.944 for recall, and 0.945 for f-measure using the best Genetic Algorithm parameters which are many generations = 50, many populations = 18, crossover rate = 1, and mutation rate = 0.


Teks Lengkap:

PDF

Referensi


CHEN, J., HUANG, H., TIAN, S. & QU, Y., 2009. Feature Selection for Text Classification with Naïve Bayes. Expert Systems with Applications, [daring] 36(3), hal.5432–5435. Tersedia pada: .

DARMA, I.M.B.S., PERDANA, R.S. & INDRIATI, 2018. Penerapan Sentimen Analisis Acara Televisi Pada Twitter Menggunakan Support Vector Machine dan Algoritma Genetika sebagai Metode Seleksi Fitur. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, [daring] 2(3), hal.998–1007. Tersedia pada: .

ERNAWATI, S., YULIA, E.R., FRIEYADIE & SAMUDI, 2019. Implementation of the Naïve Bayes Algorithm with Feature Selection using Genetic Algorithm for Sentiment Review Analysis of Fashion Online Companies. 2018 6th International Conference on Cyber and IT Service Management, CITSM 2018, hal.1–5.

FEBRIYANA, R. & MAHMUDY, W.F., 2016. Penjadwalan Kapal Penyeberangan Menggunakan Algoritma Genetika. Jurnal Teknologi Informasi dan Ilmu Komputer, 3(1), hal.43.

HADNA, N.M.S., SANTOSA, P.I. & WINARNO, W.W., 2016. Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter. Seminar Nasional Teknologi Informasi dan Komunikasi (SENTIKA). [daring] Tersedia pada: .

HAN, J., KAMBER, M. & PEI, J., 2012. Data Mining: Concepts and Techniques. 3rd ed. Waltham: Morgan Kaufmann Publishers.

HEMALATHA, I., VARMA, G.P.S. & GOVARDHAN, A., 2012. Preprocessing the Informal Text for efficient Sentiment Analysis. International Journal of Emerging Trends & Technology in Computer Science, 1(2), hal.58–61.

JOHN, G.H. & LANGLEY, P., 1995. Estimating Continuous Distributions in Bayesian Classifiers George. Proceedings of the Eleventh conference on Uncertainty in artificial intelligence.

LIU, B., 2012. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.

MAHMUDY, W.F., 2015. Dasar-Dasar Algoritma Evolusi. Universitas Brawijaya.

MANNING, C.D., RAGHAVAN, P. & SCHÜTZE, H., 2009. An Introduction to Information Retrieval. Cambidge: Cambridge University Press.

RAMDHANI, S.L., ANDRESWARI, R. & HASIBUAN, M.A., 2018. Sentiment Analysis of Product Reviews using Naive Bayes Algorithm: A Case Study. The 2nd East Indonesia Conference on Computer and Information Technology: Internet of Things for Industry, EIConCIT 2018, hal.123–127.

RASCHKA, S., 2014. Naive Bayes and Text Classification I - Introduction and Theory. CoRR, [daring] abs/1410.5. Tersedia pada: .

SAPUTRI, M.W., MAHMUDY, W.F. & RATNAWATI, D.E., 2015. Optimasi Vehicle Routing Problem With Time Window (VRPTW) Menggunakan Algoritma Genetika Pada Distribusi Barang. Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, 5(12), hal.1–10.

SIDDIQUA, U.A., AHSAN, T. & CHY, A.N., 2017. Combining a rule-based classifier with ensemble of feature sets and machine learning techniques for sentiment analysis on microblog. 19th International Conference on Computer and Information Technology, ICCIT 2016, hal.304–309.

WATI, R., 2016. Penerapan Algoritma Genetika Untuk Seleksi Fitur Pada Analisis Sentimen Review Jasa Maskapai Penerbangan. Jurnal Evolusi, 4(1), hal.25–31.

WEBSTER, J.J. & KIT, C., 1992. Tokenization As The Initial Phase in NLP. Proceedings of the 14th International Conference on Computational Linguistics.

WITTEN, I.H., MOFFAT, A. & BELL, T.C., 1999. Managing Gigabytes: Compressing and Indexing Documents and Images. 2nd ed. San Francisco: Morgan Kaufmann Publishers.




DOI: http://dx.doi.org/10.25126/jtiik.2021834436