Penerapan Metode Association Rule Mining untuk Asosiasi Ulasan Terhadap Aspek Tempat Wisata Jawa Timur Park 3

Penulis

Aisyatul Maulidah, Fitra A. Bachtiar

Abstrak

Google Review pada salah satu fitur Google Maps dapat menjadi salah satu media untuk mengukur tingkat kepuasan pengunjung Jawa Timur Park 3 (Jatim Park 3). Akan tetapi jumlah ulasan yang mencapai ribuan dan belum tersedianya media pengelola data ulasan dapat mempersulit manajemen Jatim Park 3 dalam mengeksplorasi dan menganalisis masukan pengunjung secara mendetail. Penelitian ini memanfaatkan teknik Association Rule Mining (ARM) dalam mengelola data ulasan sehingga dapat menemukan hubungan kata yang sering muncul pada ulasan. Teknik ini paling populer untuk menemukan hubungan tersembunyi antar variabel. Algoritma yang digunakan dalam mengimplementasikannya adalah algoritma Apriori karena dianggap paling efisien. Pada penelitian ini menggunakan data ulasan sebanyak 1067 ulasan dalam Bahasa Indonesia dari bulan Januari sampai bulan April tahun 2019. Berdasarkan wawancara, data tersebut digolongkan menjadi 8 aspek berdasarkan kata kunci yang sudah ditentukan sebelumnya. Aspek tersebut antara lain akses jalan, biaya, kebersihan, kepuasan, keramaian, pelayanan, keamanan, dan teknologi. Pengujian dilakukan untuk mengetahui pengaruh minimum support dan minimum confidence terhadap rule yang terbentuk. Keseluruhan aspek mampu menghasilkan asosiasi kata dengan algoritma Apriori. Selain itu, Keseluruhan rule yang terbentuk menghasilkan rata-rata lift ratio di atas 1 dimana rule dengan nilai lift ratio diatas 1 tersebut merupakan rule yang unik diantara rule-rule lain yang terebentuk dari asosiasi tersebut. Pada penelitian ini, rule yang terbentuk divisualisasikan untuk menampilkan keterkaitan antara kata kunci dengan aspek pada data ulasan pengunjung Jatim Park 3. Penelitian ini mencoba menggali informasi mengenai pemetaan layanan mana saja yang mendapatkan perhatian pengunjung di Jatim Park 3.

 

Abstract

 Google Review, which is one of the features of Google Maps can be a medium to measure the satisfaction rate visitors of Jawa Timur Park 3 (Jatim Park 3). the number of reviews that reached thousands and media of review data manager is not available yet complicate the management of Jatim Park to explore and analyze visitor feedback in detail. The Association Rule Mining (ARM) technique is a text mining method that can support the knowledge discovery process in large document collections. ARM is able to link keywords to comments to find words that appear frequently. This technique is most popular for finding hidden relationships between variables. The algorithm used in this study is apriori algorithm because it is the most efficient. In this study, there are 1067 reviews of the visitors in Indonesian from January to April 2019 as the data. The data is classified into 8 aspects based on predetermined keywords. These aspects include road access, cost, cleanliness, satisfaction, hustle, service, security, and technology. Testing was conducted to determine the minimum support and minimum confidence impact of the established rules. The whole aspects is capable of generating word associations with an Apriori algorithm. In addition, the overall rules that are formed produce an average lift ratio above 1 where the rule with that value is a unique rule among other rules formed from the association. In this study, the rules that are formed are visualized to show the relationship between keywords and aspects of visitor reviews of Jatim Park 3. This research tries to dig up information about mapping which services get the attention of visitors in Jatim Park 3.

Teks Lengkap:

PDF

Referensi


BRIJS, T., VANHOOF, K. dan WETS, G., 2003. Defining Interestigness for Association Rules. Institute of Information Theories and Applications FOI ITHEA, 10(4), pp. 370-376.

COZZA, V., PETROCCHI, M. dan SPOGNARDI, A., 2018. Mining Implicit Data Assocation from Tripadvisor Hotel Reviews. CEUR Workshop Proccedings. 2083, (2018), pp. 56-61.

CUNJIN, X., WANJIAO, S., LIJUAN, Q., QING, D. & XIAOYANG, W., 2015. A Mutual-information-based Mining method for Marine Abnormal Association Rules Comput. Geosci, 76, pp. 121-129.

FAUZY, M., SALEH, K.R. dan ASROR, I., 2016. Penerapan Metode Association Rule Menggunakan Algoritma Apriori Pada Simulasi Prediksi Hujan Wilayah Kota Bandung. Jurnal Ilmiah Teknologi Informasi Terapan, Vol. II No.2.

FELDMAN, R. dan SANGER, J., 2007. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. New York: Cambridge University Press.

HAN, J., KAMBER, M. dan PEI, J., 2012. Data Mining Concepts and Techniques. 3th ed. USA: Morgan Kaufmann Publishers.

HONG, J., TAMAKLOE, R. dan PARK, D., 2020. Application of Association Rules Mining Algorithm for Hazadous Materials Transportation Crashes on Expessway. Accident Analysis and Prevention, Vol 142.

ISANTA, S.A., FATICHAH, C. dan PURWITASARI, D., 2016. Ekstraksi Kata Kunci Metadata Twitter Berbahasa Indonesia dengan Pendekatan Grammatical Tagging untuk Visualisasi Trend Produk Brand. S1. Institut Teknologi Sepuluh Nopember.

LEE, S., CHA, Y., HAN, S. & HYUN, C., 2019. Application of Association Rule Mining and Social Network Analysis for Understanding Causality of Construction Defects. Sustainability 11, 3.

OLSON, D. dan SHI, Y., 2008. Pengantar Ilmu Panggilan Data Bisnis. Jakarta. Mc GrawHill.

REKIK, R., KALLEL, I., CASILLAS, J., & ALIMI, A.M., 2018. Assessing Web Sites Quality: A Systematic Literature Review By Text and Association Rule Mining. International Journal of Information Management, 38, pp. 201-216.

SANTOSA, B., 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.

SAURO, J., 2011. Measuring Usability With The System Usability Scale (SUS). Tersedia di: [Diakses 02 Februari 2020].

WENG, J., ZHU, J.Z., YAN, X. & LIU, Z., 2016. Investigation of Work Zone Crash Casualty Patterns Using Association Rules. Accident Analysis & Prevention, 92, pp.43-52.

WU, H., LU, Z., PAN, L. & XU, R., 2009. An Improved Apriori-based Algorithm for Association Rules Mining. Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 51-55.

WU, B., ZHANG, J.H., YAN, X.P. & YIP, T.L., 2019. Use of Association Rules for Cause-effects Relationships Analysis of Collision Accidents in The Yangtze River. In: Weintrit, A., Neumann, T. (Eds.), Advances in Marine Navigation and Safety of Sea Transportation. CRC Press/Balkema, Leiden, pp. 65.

YU, S., JIA, Y. dan SUN, D., 2019. Identifying factors that influence the patterns of road crashes using association rules: a case study from Wisconsin, United States. Sustainability, 11 (7), 1–14.




DOI: http://dx.doi.org/10.25126/jtiik.2021854417