Perbandingan Preskrining Lesi Kulit berbasis Convolutional Neural Network: Citra Asli dan Tersegmentasi

Penulis

Agung Wahyu Setiawan

Abstrak

Seiring dengan bertambahnya prevalensi lesi kulit, maka diperlukan adanya preskrining lesi kulit mandiri yang mudah dan akurat. Pada studi ini, dilakukan perbandingan kinerja preskrining lesi kulit berbasis Convolutional Neural Network antara citra asli dan citra tersegmentasi Grabcut sebagai masukan. Ada dua parameter kinerja yang digunakan sebagai evaluasi, yaitu akurasi serta waktu pembuatan model. Tidak ada perbedaan kinerja akurasi pelatihan dan validasi pembelajaran mesin menggunakan citra asli dengan citra tersegmentasi. Meskipun terdapat proses tambahan berupa penghilangan latar belakang citra menggunakan algortima Grubcut, akurasi pelatihan maupun validasi preskrining lesi kulit tidak mengalami peningkatan yang signifikan. Pada parameter kinerja yang kedua, waktu pembuatan model dipengaruhi oleh jumlah data latih dan validasi. Semakin kecil jumlah data latih yang digunakan, maka waktu pembuatan model akan semakin cepat, dan sebaliknya. Disamping itu, proporsi antara jumlah data latih dengan validasi juga berpengaruh ke akurasi validasi. Pada studi ini, dengan menggunakan jumlah data latih yang lebih kecil dibandingkan data validasi, akurasi validasi mengalami peningkatan dari 0,82% menjadi 0,90%. Studi ini telah memberikan bukti bahwa pada preskrining lesi kulit menggunakan pembelajaran mesin berbasis CNN tidak diperlukan mekanisme adanya penghilangan latar belakang citra. Selain itu, pembuatan model pembelajaran mesin berbasis CNN dapat dilakukan dengan menggunakan data latih sekitar 22,41% dari data total. Diharapkan, hasil studi ini dapat dimanfaatkan untuk pengembangan aplikasi preskrining lesi kulit menggunakan pembelajaran mesin berbasis CNN pada komputer atau gawai dengan sumber daya komputasi yang rendah.

 

Abstract

 

It is necessary to develop a self-prescreening of skin lesion due to the prevalence is increasing every year. This study tries to compare and evaluate the performance of prescreening of a skin lesion in the original and segmented images using Convolutional Neural Network. The Grabcut algorithm is used in the image segmentation process. Two parameters are used to evaluate the performance of the classification, i.e. accuracy and time to build the model. The results show that there is no significant difference in training and validation accuracy between original and segmented images. Even though there is an additional process in removing image background using Grabcut, the accuracy of training and validation do not increase significantly. In the second performance indicator, the time to build the model is influenced by the numbers of training and validation data that are used. The smaller the amount of training data used, the faster the model creation time will be. In addition, the proportion between the amount of training data and validation also affects the accuracy of validation. In this study, using a smaller amount of training data than the validation data, the validation accuracy increased from 0.82 to 0.90. This study has provided evidence that prescreening of skin lesions using machine learning based on CNN does not require image background removal and only about 22.41% of the total data are needed to build the model. One of the contributions of this study is that the results of this study can be used for the development of a skin lesion prescreening application using CNN-based machine learning on computers or devices with low computational resources.

Teks Lengkap:

PDF

Referensi


BI, L., KIM, J., AHN, E., KUMAR, A., FULHAM, M. dan FENG, D., 2017. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks. IEEE Transactions on Biomedical Engineering, 64(9), pp.2065–2074.

BOZORGTABAR, B., SEDAI, S., KANTI ROY, P. dan GARNAVI, R., 2017. Skin lesion segmentation using deep convolution networks guided by local unsupervised learning. IBM Journal of Research dan Development, 61(4).

BRINKER, T.J., dkk., 2019a. Deep neural networks are superior to dermatologists in melanoma image classification. European Journal of Cancer, [online] 119, pp.11–17. Available at: [Accessed 17 Sep. 2020].

BRINKER, T.J., dkk, 2019b. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. European Journal of Cancer, 113, pp.47–54.

CHAN, S., dkk, 2020. Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations. Dermatology and Therapy, Available at: [Accessed 17 Sep. 2020].

CODELLA, N.C.F., dkk., 2018. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: Proceedings - International Symposium on Biomedical Imaging. IEEE Computer Society.pp.168–172.

COMBALIA, M., dkk, 2019. BCN20000: Dermoscopic Lesions in the Wild. [online] Available at: [Accessed 17 Sep. 2020].

HAENSSLE, dkk., 2018. Man against Machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of Oncology, 29(8), pp.1836–1842.

HEKLER, A., dkk, 2019. Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 120, pp.114–121.

JAISAKTHI, S.M., MIRUNALINI, P. dan ARAVINDAN, C., 2018. Automated skin lesion segmentation of dermoscopic images using GrabCut and kmeans algorithms. IET Computer Vision, 12(8), pp.1088–1095.

OKUR, E. dan TURKAN, M., 2018. A survey on automated melanoma detection. Engineering Applications of Artificial Intelligence, 73, pp.50–67.

PEREIRA, P.M.M., dkk., 2020. Dermoscopic skin lesion image segmentation based on Local Binary Pattern Clustering: Comparative study. Biomedical Signal Processing and Control, 59, p.101924.

TSCHANDL, P., dkk., 2019. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. The Lancet Oncology, 20(7), pp.938–947.

TSCHANDL, P., ROSENDAHL, C. dan KITTLER, H., 2018. Data descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, [online] 5(1), pp.1–9. Available at: [Accessed 17 Sep. 2020].

UDREA, A., dkk., 2020. Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms. Journal of the European Academy of Dermatology and Venereology, [online] 34(3), pp.648–655. Available at: [Accessed 17 Sep. 2020].

ÜNVER, H.M. dan AYAN, E., 2019. Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm. Diagnostics, [online] 9(3), p.72. Available at: [Accessed 17 Sep. 2020].

WARDHANA, M., G dkk., 2019. Karakteristik kanker kulit di Rumah Sakit Umum Pusat Sanglah Denpasar tahun 2015-2018. DiscoverSys | Intisari Sains Medis, [online] 10(1), pp.260–263. Available at: [Accessed 17 Sep. 2020].

WILVESTRA, S., LESTARI, S. dan ASRI, E., 2018. Studi Retrospektif Kanker Kulit di Poliklinik Ilmu Kesehatan Kulit dan Kelamin RS Dr. M. Djamil Padang Periode Tahun 2015-2017. Jurnal Kesehatan Andalas, [online] 7(0), p.47. Available at: [Accessed 17 Sep. 2020].

ZAFAR, K., dkk., 2020. Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network. Sensors, [online] 20(6), p.1601. Available at: [Accessed 24 Sep. 2020].




DOI: http://dx.doi.org/10.25126/jtiik.2021844411