Implementasi Algoritma You Only Look Once (YOLO) untuk Deteksi Korban Bencana Alam

Penulis

Moechammad Sarosa, Nailul Muna

Abstrak

Bencana alam merupakan suatu peristiwa yang dapat menyebabkan kerusakan dan menciptakan kekacuan. Bangunan yang runtuh dapat menyebabkan cidera dan kematian pada korban. Lokasi dan waktu kejadian bencana alam yang tidak dapat diprediksi oleh manusia berpotensi memakan korban yang tidak sedikit. Oleh karena itu, untuk mengurangi korban yang banyak, setelah kejadian bencana alam, pertama yang harus dilakukan yaitu menemukan dan menyelamatkan korban yang terjebak. Penanganan evakuasi yang cepat harus dilakukan tim SAR untuk membantu korban. Namun pada kenyataannya, tim SAR mengalami kendala selama proses evakuasi korban. Mulai dari sulitnya medan yang dijangkau hingga terbatasnya peralatan yang dibutuhkan. Pada penelitian ini sistem diimplementasikan untuk deteksi korban bencana alam yang bertujuan untuk membantu mengembangkan peralatan tim SAR untuk menemukan korban bencana alam yang berbasis pengolahan citra. Algoritma yang digunakan untuk mendeteksi ada atau tidaknya korban pada gambar adalah You Only Look Once (YOLO). Terdapat dua macam algoritma YOLO yang diimplementasikan pada sistem yaitu YOLOv3 dan YOLOv3 Tiny. Dari hasil pengujian yang telah dilakukan didapatkan F1 Score mencapai 95.3% saat menggunakan YOLOv3 dengan menggunakan 100 data latih dan 100 data uji.

 

Abstract

 

Natural disasters are events that can cause damage and create havoc. Buildings that collapse and can cause injury and death to victims. Humans can not predict the location and timing of natural disasters. After the natural disaster, the first thing to do is find and save trapped victims. The handling of rapid evacuation must be done by the SAR team to help victims to reduce the amount of loss due to natural disasters. But in reality, the process of evacuating victims of natural disasters is still a lot of obstacles experienced by the SAR team. It was starting from the difficulty of the terrain that is reached to the limited equipment needed. In this study, a natural disaster victim detection system was designed using image processing that aims to help find victims in difficult or vulnerable locations when directly reached by humans. In this study, a detection system for victims of natural disasters was implemented which aims to help develop equipment for the SAR team to find victims of natural disasters based on image processing. The algorithm used is You Only Look Once (YOLO). In this study, two types of YOLO algorithms were compared, namely YOLOv3 and YOLOv3 Tiny. From the test results that have been obtained, the F1 Score reaches 95.3% when using YOLOv3 with 100 training data and 100 test data.

Teks Lengkap:

PDF

Referensi


ADARSH, P., RATHI, P. & KUMAR, M., 2020. YOLO v3-Tiny: Object Detection and Recognition using one stage improved model. Coimbatore, s.n.

ANGELO, K. M., 2018. A novel approach on object detection and tracking using adaptive background subtraction method. Chidambaram, India, s.n.

ARLINTA, D., 2019. Bencana Hidrometeorologi Paling Banyak, Sepanjang 2019 Terjadi 1.586 Bencana Alam. [Online]

Available at: [Diakses 10 Maret 2020].

ASSHIDDIQIE, M. A. J., RAHMAT, B. & ANGGRAENY, F. T., 2020. Deteksi Tanaman Tebu pada Lahan Pertanian Menggunakan Metode Convolutional Neural Network. Jurnal Informatika dan Sistem Informasi (JIFoSI), 1(1), pp. 229 - 237.

COROVIC, A., ILIĆ, V., ĐURIĆ, S. & MALIŠA, 2018. The Real-Time Detection of Traffic Participants Using YOLO Algorithm. Serbia, s.n.

FANG, W., WANG, L. & REN, P., 2020. Tinier-YOLO: A Real-Time Object DetectionMethod for Constrained Environments. IEEE Access, Volume 8, pp. 1935 - 1944.

HARTAWAN, D. R., PURBOYO, T. W. & SETIANINGSIH, C., 2019. Disaster Victims Detection System Using Convolutional Neural Network (CNN) Method. Indonesia, s.n.

JIWOONG, C., DAYOUNG, C., HYUN, K. & LEE, H.-J., 2019. Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving. Seoul, IEEE International Conference on Computer Vision.

PRASETYO, N. A., PRANOWO & SANTOSO, A. . J., 2020. Automatic Detection and Calculation of Palm Oil Fresh Fruit Bunches using Faster R-CNN. International Journal of Applied Science and Engineering, 17(2), pp. 121-134.

RAGHUNANDAN, A., MOHANA, RAGHAV, P. & ARADHYA, H. V. R., 2018. Object Detection Algorithms for Video Surveillance Applications. Chennai, India, s.n.

RAMADHAN, M. I. & PRIHANDOKO, 2017. Penerapan Data Mining untuk Analisis Data Bencana Milik BNBP Menggunakan Algoritma K-Means dan Linear Regression. Jurnal Informatika dan Komputer Volume 22, April, pp. 57-65.

RENTAO, Z. ET AL., 2019. Indoor Smoking Behavior Detection Based on YOLOv3-tiny. Hangzhou, 2019 Chinese Automation Congress (CAC).

SHARPE, S. M., SCHUMANN , A. W. & BOYD, N. S., 2020. Goosegrass Detection in Strawberry and Tomato Using a Convolutional Neural Network. Scientific Reports, 10(9548), pp. 1 - 8.

YANG, Z. ET AL., 2019. Combining Yolov3-tiny Model with Dropblock for Tiny-face Detection. Xi'an, China, 2019 IEEE 19th International Conference on Communication Technology (ICCT).

ZENG, Z., GONG, Q. & ZHANG, J., 2019. CNN Model Design of Gesture Recognition Based on Tensorflow Framework. Xi'an, China, s.n.

ZHANG, Y., SHEN, Y. & ZHANG, J., 2019. An improved tiny-yolov3 pedestrian detection algorithm. International Journal for Light and Electron Optics, Volume 183, pp. 17-23.




DOI: http://dx.doi.org/10.25126/jtiik.2021844407