Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin

Penulis

  • Agung W. Setiawan Sekolah Teknik Elektro dan Informatika - Institut Teknologi Bandung
  • Yusuf A. Rahman RSUD Abdul Moeloek, Lampung
  • Amir Faisal Teknik Biomedis, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera
  • Marsudi Siburian Teknik Biomedis, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera
  • Nova Resfita Teknik Biomedis, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera
  • Muhammad W. Gifari Teknik Biomedis, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera
  • Rudi Setiawan Teknik Biomedis, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera

DOI:

https://doi.org/10.25126/jtiik.2021844377

Abstrak

Di beberapa daerah di Indonesia, malaria masih merupakan salah satu penyakit endemik dan termasuk ke dalam kategori penyakit menular dengan vektor nyamuk Anopheles. Penurunan jumlah mortalitas penderita malaria ini telah menjadi program Pemerintah Indonesia dan World Health Organization. Salah satu hal penting yang dapat dilakukan adalah menyediakan alat diagnosis malaria yang cepat dan akurat berbantukan komputer. Oleh karena itu, pada studi ini dikembangkan sebuah metode deteksi malaria berbasis segmentasi warna citra yang dikombinasikan dengan metode pencacahan objek citra dan pembelajaran mesin berbasis Convolutional Neural Network. Pada studi ini, segmentasi citra dilakukan dengan menetapkan suatu nilai ambas batas tertentu (thresholding) pada model warna HSV. Nilai ambang batas untuk masing-masing kanal warna ditetapkan sebagai berikut: H = 100-175, S = 100-250, dan V = 60-190. Terdapat tiga skema pembelajaran mesin yang digunakan, yaitu citra asli menggunakan RMSProp optimizer, citra tersegmentasi menggunakan RMSProp dan Adam optimizer. Akurasi pelatihan dan validasi CNN tertinggi diperoleh dengan skema citra tersegmentasi menggunakan RMSProp optimizer, yaitu sebesar 92,77% dan 94,38%. Sementara, deteksi malaria berbasis pencacahan objek memiliki akurasi sebesar 93,78%. Meskipun deteksi malaria berbasis pencacahan objek memiliki akurasi 93,78%, tetapi sumber daya komputasi dan waktu yang diperlukan jauh lebih rendah.

Abstract

Malaria is still one of the endemic diseases in several regions of Indonesia. Reducing the malaria mortality rate has become a notable programme, not only does the Government of the Republic of Indonesia project it, but also the World Health Organization has a similar plan to tackle this disease. One of the prominent concerns to properly promote this programme is providing a rapid and accurate malaria diagnosis tool by applying the computer-aided diagnostics to minimize human errors. The aim of this study is to develop a colour microscopic image-based malaria detection using object counting and CNN-based machine learning. In this research, the HSV colour model with threshold values of H: 100-175, S: 100-250, and V: 60-190 was used to remove the image background. There are three machine learning schemes implemented in this study, i.e. original image using RMSProp optimizer, segmented image using RMSProp and Adam optimizer. The highest training and validation accuracy of CNN were obtained using a segmented image scheme by the RMSProp optimizer, 0.9277 and 0.9438. On the contrary, object-based malaria detection has an accuracy of 93.78%. Furthermore, there are several considerations to determine the malaria detection method, i.e. accuracy, computational resources, and time. Even though malaria detection using object counting has an accuracy of 93.78%, lower than the accuracy of CNN validation, the computational resources and time required are much lower and faster. Therefore, this detection method is suitable for smartphone-based devices with low-middle end specifications.

Downloads

Download data is not yet available.

Referensi

FUHAD, K.M.F., TUBA, J.F., SARKER, M.R.A., MOMEN, S., MOHAMMED, N. dan RAHMAN, T., 2020. Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application. Diagnostics, [online] 10(5), p.329. Available at: <https://www.mdpi.com/2075-4418/10/5/329> [Accessed 25 Sep. 2020].

KAUSHIK, R. dan KUMAR, S., 2019. Image Segmentation Using Convolutional Neural Network. International Journal of Scientific and Technology Research, Vol.8, p. 667-675.

KEMENKES, R.I., 2018. Laporan Nasional Riskesdas 2018. Jakarta: Kemenkes RI, pp.101-108.

KINGMA, D.P. dan BA, J.L., 2015. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. [online] International Conference on Learning Representations, ICLR. Available at: <https://arxiv.org/abs/1412.6980v9> [Accessed 26 Sep. 2020].

MAKANJUOLA, R.O. dan TAYLOR-ROBINSON, A.W., 2020. Improving Accuracy of Malaria Diagnosis in Underserved Rural and Remote Endemic Areas of Sub-Saharan Africa: A Call to Develop Multiplexing Rapid Diagnostic Tests. Scientifica, Available at: <https://pubmed.ncbi.nlm.nih.gov/32185083/> [Accessed 25 Sep. 2020].

MFUH, K.O., ACHONDUH-ATIJEGBE, O.A., BEKINDAKA, O.N., ESEMU, L.F., MBAKOP, C.D., GANDHI, K., LEKE, R.G.F., TAYLOR, D.W. dan NERURKAR, V.R., 2019. A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria. Malaria Journal, [online] 18(1), p.73. Available at: <https://malariajournal.biomedcentral.com/articles/10.1186/s12936-019-2711-4> [Accessed 26 Sep. 2020].

MUKRY, S.N., SAUD, M., SUFAIDA, G., SHAIKH, K., NAZ, A. dan SHAMSI, T.S., 2017. Laboratory diagnosis of malaria: Comparison of manual and automated diagnostic tests. Canadian Journal of Infectious Diseases and Medical Microbiology, [online] 2017. Available at: <https://pubmed.ncbi.nlm.nih.gov/28479922/> [Accessed 25 Sep. 2020].

POOSTCHI, M., SILAMUT, K., MAUDE, R.J., JAEGER, S. dan THOMA, G., 2018. Image analysis and machine learning for detecting malaria. Translational Research, 194, pp.36-55.

RAJARAMAN, S., ANTANI, S.K., POOSTCHI, M., SILAMUT, K., HOSSAIN, M.A., MAUDE, R.J., JAEGER, S. dan THOMA, G.R., 2018. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ, [online] 2018(4). Available at: <https://pubmed.ncbi.nlm.nih.gov/29682411/> [Accessed 25 Sep. 2020].

RAJARAMAN, S., JAEGER, S. dan ANTANI, S.K., 2019. Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ, [online] 7, p.e6977. Available at: <https://pubmed.ncbi.nlm.nih.gov/31179181/> [Accessed 25 Sep. 2020].

RINAWATI, W. and HENRIKA, F., 2019. Diagnosis Laboratorium Malaria. Journal of The Indonesian Medical Association, 69(10), pp.327-335.

SULTANA, F., SUFIAN, A. dan DUTTA, P., 2020. Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey. Knowledge-Based Systems, 201–202, p.106062.

WORLD HEALTH ORGANIZATION, 2015. Global technical strategy for malaria 2016-2030. World Health Organization.

WORLD HEALTH ORGANIZATION, 2016. Malaria microscopy quality assurance manual-version 2. World Health Organization.

WORLD HEALTH ORGANIZATION, 2019. World malaria report 2019. World Health Organization.

ZAITOUN, N.M. dan AQEL, M.J., 2015. Survey on Image Segmentation Techniques. In: Procedia Computer Science. Elsevier.pp.797–806.

ZHANG, D., SONG, Y., LIU, D., JIA, H., LIU, S., XIA, Y., HUANG, H. dan CAI, W., 2018. Panoptic segmentation with an end-to-end cell R-CNN for pathology image analysis. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [online] Springer Verlag.pp.237–244. Available at: <https://link.springer.com/chapter/10.1007/978-3-030-00934-2_27> [Accessed 26 Sep. 2020].

Diterbitkan

22-07-2021

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin. (2021). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(4), 769-776. https://doi.org/10.25126/jtiik.2021844377