Peningkatan Utilisasi Jaringan Distributed Storage System Menggunakan Kombinasi Server dan Link Load Balancing

Penulis

Hawwin Purnama Akbar, Achmad Basuki, Eko Setiawan

Abstrak

Distributed Storage System (DSS) memiliki sejumlah perangkat server penyimpanan yang terhubung dengan banyak perangkat switch untuk meningkatkan utilisasi jaringan. DSS harus memperhatikan keseimbangan beban pada sisi server penyimpanan dan trafik data pada semua jalur yang terhubung. Jika beban pada sisi server penyimpanan dan trafik data tidak seimbang, maka dapat menyebabkan bottleneck network yang menurunkan utilisasi jaringan. Kombinasi server dan link load balancing adalah solusi yang tepat untuk menyeimbangkan beban pada sisi server penyimpanan dan trafik data. Penelitian ini mengusulkan metode kombinasi algoritme least connection sebagai metode server-load balancing dan algoritme global first fit sebagai metode link load balancing. Algoritme global first fit merupakan salah satu dari algoritme load balancing hedera yang bertujuan untuk menyeimbangkan trafik data berukuran besar (10% dari bandwidth), sehingga terhindar dari permasalahan bottleneck network. Algoritme least connection merupakan salah satu algoritme server load balancing yang menggunakan jumlah total koneksi dari server untuk menentukan prioritas server. Hasil evaluasi kombinasi metode tersebut didapatkan peningkatan pada rata-rata throughput sebesar 77,9% dibanding hasil metode Equal Cost Multi Path (ECMP) dan Round robin (RR). Peningkatan pada rata-rata penggunaan bandwidth sebesar 65,2% dibanding hasil metode ECMP dan RR. Hasil Penggunaan CPU dan memory pada server di metode kombinasi ini juga terjadi penurunan beban CPU sebesar 34,29% dan penurunan beban penggunaan memory sebesar 9,8% dibanding metode ECMP dan RR. Dari hasil evaluasi, penerapan metode kombinasi metode server dan link load balancing berhasil meningkatkan utilisasi jaringan dan juga mengurangi beban server.

 

Abstract

Distributed Storage System (DSS) has a number of storage server devices that are connected to multiple switch devices to increase network utilization. DSS must pay attention to the balance of the load on the storage server side and data traffic on all connected lines. If the load on the storage server side and data traffic is not balanced, it can cause a network bottleneck that reduces network utilization. The combination of server and link-load balancing is the right solution to balance the load on the server side of storage and data traffic. This study proposes a combination of the least connection algorithm as a server-load balancing method and the global first fit algorithm as a link-load balancing method. The global first fit algorithm is one of Hedera's load balancing algorithms which aims to balance large data traffic (10% of bandwidth), so as to avoid network bottleneck problems. Least connection algorithm is one of the server balancing algorithms that uses the total number of connections from the server to determine server priority. The results of the evaluation of the combination of these methods showed an increase in the average throughput of 77.9% compared to the results of the Equal Cost Multi Path (ECMP) and Round robin (RR) methods. The increase in the average bandwidth usage is 65.2% compared to the results of the ECMP and RR methods. The results of CPU and memory usage on the server in this combination method also decreased CPU load by 34.29% and a decrease in memory usage load by 9.8% compared to the ECMP and RR methods. From the evaluation results, the application of a combination of the server method and the link load balancing method has succeeded in increasing network utilization and also reducing server load.


Teks Lengkap:

PDF

Referensi


AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., HUANG, N., DAN VAHDAT, A. (2010): Hedera, Hedera: Dynamic Flow Scheduling for Data Center Network,130–131. https://doi.org/10.1201/b16160-86

CHEN, W., LI, H., MA, Q., DAN SHANG, Z. (2014): Design and implementation of server cluster dynamic load balancing in virtualization environment based on OpenFlow, ACM International Conference Proceeding Series, 2014-May(May), 691–697.

https://doi.org/10.1145/2619287.2619288

DIMAKIS, A. G., GODFREY, P. B., WU, Y., WAINWRIGHT, M. J., DAN RAMCHANDRAN, K. (2010): Network coding for distributed storage systems, IEEE Transactions on Information Theory, 56(9), 4539–4551. https://doi.org/10.1109/TIT.2010.2054295

FLEXERA (2020): 2020 Flexera State of the Cloud Report, 1–19.

GUILLEN, L., IZUMI, S., ABE, T., SUGANUMA, T., DAN MURAOKA, H. (2018a): SDN-based hybrid server and link load balancing in multipath distributed storage systems, IEEE/IFIP Network Operations and Management Symposium: Cognitive Management in a Cyber World, NOMS 2018, 1–6. https://doi.org/10.1109/NOMS.2018.8406286

GUILLEN, L., IZUMI, S., ABE, T., SUGANUMA, T., DAN MURAOKA, H. (2018b): SDN implementation of multipath discovery to improve network performance in distributed storage systems, 2017 13th International Conference on Network and Service Management, CNSM 2017, 2018-January, 1–4. https://doi.org/10.23919/CNSM.2017.8256054

KANEKO, S., NAKAMURA, T., KAMEI, H., DAN MURAOKA, H. (2016): A guideline for data placement in heterogeneous distributed storage systems, Proceedings - 2016 5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2016, (disk M), 942–945.https://doi.org/10.1109/IIAI-AAI.2016.162

KREUTZ, D., RAMOS, F. M. V., VERISSIMO, P. E., ROTHENBERG, C. E., AZODOLMOLKY, S., DAN UHLIG, S. (2015): Software-defined networking: A comprehensive survey, Proceedings of the IEEE, 103(1), 14–76.

https://doi.org/10.1109/JPROC.2014.2371999

KUROSE, J., DAN ROSS, K. (2007): Chapter 1 : Introduction Chapter 1 Background Chapter 1 : roadmap “ Cool ” internet appliances What ’ s a protocol ?, 1–20.

LIU, Y., RAMESHAN, N., MONTE, E., VLASSOV, V., DAN NAVARRO, L. (2015): ProRenaTa: Proactive and reactive tuning to scale a distributed storage system, Proceedings - 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, 453–464. https://doi.org/10.1109/CCGrid.2015.26

MAHMOOD, A., DAN RASHID, I. (2011): Comparison of load balancing algorithms for clustered web servers, 2011 International Conference on Information Technology and Multimedia: “Ubiquitous ICT for Sustainable and Green Living”, ICIM 2011, (November). https://doi.org/10.1109/ICIMU.2011.6122721

MUSTAFA, M. E. (2017): Load Balancing Algorithms Round-Robin ( Rr ), Least- Connection , and Least Loaded Efficiency, Computer Science and Telecommunications, diperoleh melalui situs internet: http://gesj.internetacademy.org.ge/download.php?id=2886.pdf&t=1, 51(1), 25–29.

SUH, C., DAN RAMCHANDRAN, K. (2011): Exact-Repair MDS Code Construction Using, 57(3), 1425–1442.

WANG, T., SU, Z., XIA, Y., DAN HAMDI, M. (2014): Rethinking the data center networking: Architecture, network protocols, and resource sharing, IEEE Access, 2, 1481–1496. https://doi.org/10.1109/ACCESS.2014.2383439

XIA, W., WEN, Y., DAN FOH, C. H. (2018): A Survey on Software-Defined Networking, Asian Pacific Journal of Reproduction, 7(2), 72–78. https://doi.org/10.4103/2305-0500.228016

YE, J. L., CHEN, C., DAN HUANG CHU, Y. (2018): A Weighted ECMP Load Balancing Scheme for Data Centers Using P4 Switches, Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking, CloudNet 2018, 1–4. https://doi.org/10.1109/CloudNet.2018.8549549

ZHANG, J., YU, F. R., WANG, S., HUANG, T., LIU, Z., DAN LIU, Y. (2018): Load balancing in data center networks: A survey, IEEE Communications Surveys and Tutorials, 20(3), 2324–2325. https://doi.org/10.1109/COMST.2018.2816042




DOI: http://dx.doi.org/10.25126/jtiik.2021834294