Analisis Tren dan Perkiraan Pandemi COVID-19 di Indonesia Menggunakan Peramalan Metode Prophet :Sebelum dan Sesudah Aturan New Normal

Penulis

  • Mawaddah Harahap Univeritas Prima Indonesia, Medan
  • Ahmad Zaki Andika Univeritas Prima Indonesia, Medan
  • Amir Mahmud Husein Univeritas Prima Indonesia, Medan
  • Abdi Dharma Univeritas Prima Indonesia, Medan

DOI:

https://doi.org/10.25126/jtiik.2022914060

Abstrak

Dalam menanggulangi penyebaran pandemi Covid-19 di Indonesia, pemerintah telah menetapkan PSBB dan aturan Normal Baru namun laju penyebaran pandemi terus meningkat dari waktu ke waktu. Selain itu, ketidakpastian akan berakhirnya pandemi ini berdampak pada perubahan kondisi sosial. Makalah ini bertujuan untuk memfasilitasi perbandingan antara PSBB dan regulasi New Normal tentang perkembangan jumlah kasus Covid-19 di Indonesia dengan memetakan jumlah kumulatif kasus (kasus aktif, sembuh, dikonfirmasi dan meninggal). Metode Prophet digunakan untuk memprediksi kasus kematian dan terkonfirmasi dalam 30 hari ke depan. Analisis data visual dengan pendekatan Exploratory Data Analysis (EDA) disajikan untuk memberikan pemahaman tentang perkembangan penyebaran pandemi di Indonesia. Pengujian kerangka analisis dilakukan dengan eksperimen untuk mengukur tingkat ketepatan prediksi metode Prophet dengan membagi kumpulan data historis periode 23 Maret 2020 - 31 Juli 2020, sedangkan data bulan terakhir dari kumpulan data periode 01 Agustus 2020 hingga 5 September 2020 digunakan sebagai target prediksi. Berdasarkan hasil pengujian metode Prophet memprediksi Indonesia akan mengalami peningkatan jumlah kasus terkonfirmasi sekitar 238.322 kasus dan kematian sekitar 9.609 hingga akhir September dengan tingkat kesalahan relatif dari estimasi yang dievaluasi dengan MAPE sekitar 23,9%. dan MAE sekitar 73,12 MAE. Hasil analisis visual penyebaran suatu pandemi juga disajikan dengan harapan dapat bermanfaat sebagai wawasan perkembangan jumlah kasus pandemi di Indonesia.

 

Abstract

 

In countering the spread of the Covid-19 pandemic in Indonesia, the government has set PSBB and New Normal rules but the rate of spread of the pandemic continues to increase from time to time. In addition, the uncertainty about the end of this pandemic has resulted in changing social conditions. This paper aims to facilitate a comparison between the PSBB and New Normal regulations on the development of the number of Covid-19 cases in Indonesia by mapping the cumulative number of cases (active, cured, confirmed and death cases). The Prophet method is used to predict confirmed cases and deaths within the next 30 days. Visual data analysis using the Exploratory Data Analysis (EDA) approach is presented to provide an understanding of the development of the pandemic spread in Indonesia. The testing analysis framework was carried out by experiments to measure the level of prediction accuracy of the prophet method by dividing the historical data set for the period 23 March 2020 - 31 July 2020, while the last month data from the data set for the period 01 August 2020 to 5 September 2020 were used as prediction targets. Based on the results of the Prophet method testing it is estimated that Indonesia will experience an increase in the number of confirmed cases around 238,322 and cases of death around 9,609 until the end of September with the relative error rate of estimates evaluated with MAPE around 23.9% and MAE around 73.12 MAE. The results of a visual analysis of the spread of a pandemic are also presented in the hope that they will be useful as an insight into the development of the number of pandemic cases in Indonesia.


Downloads

Download data is not yet available.

Referensi

AHMADI, A., Fadaei, Y., Shirani, M., & Rahmani, F. (2020). Modeling and forecasting trend of COVID-19 epidemic in Iran until may 13, 2020. Medical Journal of the Islamic Republic of Iran, 34(1). https://doi.org/10.34171/mjiri.34.27

ARORA, P., Kumar, H., & Panigrahi, B. K. (2020). Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. Chaos, Solitons and Fractals, 139(January), 110017. https://doi.org/10.1016/j.chaos.2020.110017

AZARAFZA, M., Azarafza, M., & Tanha, J. (2020). COVID-19 Infection Forecasting based on Deep Learning in Iran. Medrxiv, 3–9. https://doi.org/10.1101/2020.05.16.20104182

BAYYURT, L., & Bayyurt, B. (2020). Forecasting of COVID-19 Cases and Deaths Using ARIMA Models, 21(1), 1–9. https://doi.org/10.1101/2020.04.17.20069237

CEYLAN, Z. (2020). Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of The Total Environment, 729(January), 138817. https://doi.org/10.1016/j.scitotenv.2020.138817

CHIMMULA, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons and Fractals, 135(January), 109864. https://doi.org/10.1016/j.chaos.2020.109864

COTA, W. (2020). Monitoring the number of COVID-19 cases and deaths in Brazil at municipal and federative units level TT - Monitorando o número de casos e óbitos por COVID-19 no Brasil em nível munipal e de unidades federativas. https://doi.org/10.1590/SciELOPreprints.362

COVID-19/csse_covid_19_data at master · CSSEGISandData/COVID-19. (n.d.). Diambil 31 Agustus 2020, dari https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data

CROKIDAKIS, N. (2020). Modeling the early evolution of the COVID-19 in Brazil: Results from a Susceptible–Infectious–Quarantined–Recovered (SIQR) model. International Journal of Modern Physics C, 2050135. https://doi.org/10.1142/s0129183120501351

EWIS, A., Dagnew, G., Reda, A., Elmarhomy, G., Elhosseini, M., Hassanien, A. E., & Gad, I. (2020). ARIMA Models for Predicting the End of COVID-19 Pandemic and the Risk of a Second Rebound. https://doi.org/10.21203/rs.3.rs-34702/v1

FANELLI, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons and Fractals, 134, 109761. https://doi.org/10.1016/j.chaos.2020.109761

GIORDANO, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., & Colaneri, M. (2020). Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine (Vol. 26). Springer US. https://doi.org/10.1038/s41591-020-0883-7

GUO, Q., Li, M., Wang, C., Wang, P., Fang, Z., tan, J., … Zhu, H. (2020). Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv, 2020.01.21.914044. https://doi.org/10.1101/2020.01.21.914044

GUPTA, R., & Pal, S. (2020). Trend Analysis and Forecasting of COVID-19 outbreak in India, 1–19. https://doi.org/10.1101/2020.03.26.20044511

HU, Z., Ge, Q., Li, S., Jin, L., & Xiong, M. (2020). Artificial Intelligence Forecasting of Covid-19 in China, 1–20. Diambil dari http://arxiv.org/abs/2002.07112

HUANG, C. J., & Kuo, P. H. (2019). Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE Access, 7, 74822–74834. https://doi.org/10.1109/ACCESS.2019.2921238

JANA, S., & Ghose, D. (2020). Adaptive short term COVID-19 prediction for India. medRxiv, 2020.07.18.20156745. https://doi.org/10.1101/2020.07.18.20156745

KUMAR, P., Kalita, H., Patairiya, S., Sharma, Y. D., Nanda, C., Rani, M., … Bhagavathula, A. S. (2020). Forecasting the dynamics of COVID-19 Pandemic in Top 15 countries in April 2020: ARIMA Model with Machine Learning Approach, (April). https://doi.org/10.1101/2020.03.30.20046227

MAHALLE, P. N., Sable, N. P., Mahalle, N. P., & Shinde, G. R. (2020). Data Analytics: COVID-19 Prediction using Multimodal Data, (May), 1–11. https://doi.org/10.20944/preprints202004.0257.v2

MALIK, A. B. (2020). Analysis and Forecast of COVID-19 Pandemic in Pakistan, 1–11. https://doi.org/10.20944/preprints202006.0353.v1

MASSONNAUD, C., Roux, J., & Crépey, P. (2020). COVID-19: Forecasting short term hospital needs in France. medRxiv, 2020.03.16.20036939. https://doi.org/10.1101/2020.03.16.20036939

MOFTAKHAR, L., & Seif, M. (2020). The exponentially increasing rate of patients infected with COVID-19 in Iran. Archives of Iranian Medicine, 23(4), 235–238. https://doi.org/10.34172/aim.2020.03

PAPASTEFANOPOULOS, V., Linardatos, P., & Kotsiantis, S. (2020). COVID-19: A comparison of time series methods to forecast percentage of active cases per population. Applied Sciences (Switzerland), 10(11), 1–15. https://doi.org/10.3390/app10113880

Direktorat Layanan APTIKA. (2020). Peta Sebaran | Satgas Penanganan COVID-19. https://covid19.go.id/peta-sebaran

PERONE, G. (2020a). An ARIMA Model to Forecast the Spread of COVID-2019 Epidemic in Italy. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3564865

PERONE, G. (2020b). ARIMA forecasting of COVID-19 incidence in Italy, Russia, and the USA. SSRN Electronic Journal, (December 2019). https://doi.org/10.2139/ssrn.3612402

POONIA, N., & Azad, S. (2020). Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020, (May). Diambil dari http://arxiv.org/abs/2004.13538

RANJAN, R. (2020). Predictions for COVID-19 outbreak in India using Epidemiological models. medRxiv, 2020.04.02.20051466. https://doi.org/10.1101/2020.04.02.20051466

Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C., & Coelho, L. dos S. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons and Fractals, 135(January), 109853. https://doi.org/10.1016/j.chaos.2020.109853

ROY, A., & Karmakar, S. (2020). Bayesian semiparametric time varying model for count data to study the spread of the COVID-19 cases, (0). Diambil dari http://arxiv.org/abs/2004.02281

ŞAHIN, U., & Şahin, T. (2020). Forecasting the cumulative number of confirmed cases of COVID-19 in Italy, UK and USA using fractional nonlinear grey Bernoulli model. Chaos, Solitons and Fractals, 138(January), 109948. https://doi.org/10.1016/j.chaos.2020.109948

SALIM, N., Chan, W. H., Mansor, S., Bazin, N. E. N., Amaran, S., Mohd Faudzi, A. A., … Shithil, S. M. (2020). COVID-19 epidemic in Malaysia: Impact of lock-down on infection dynamics. medRxiv, 2020.04.08.20057463. https://doi.org/10.1101/2020.04.08.20057463

SHAHID, F., Zameer, A., & Muneeb, M. (2020). Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos, Solitons and Fractals, 140(January), 110212. https://doi.org/10.1016/j.chaos.2020.110212

SHASTRI, S., Singh, K., Kumar, S., Kour, P., & Mansotra, V. (2020). Time Series Forecasting of Covid-19 using Deep Learning Models: India-USA Comparative Case Study. Chaos, Solitons & Fractals, 140(January), 110227. https://doi.org/10.1016/j.chaos.2020.110227

SHERSTINSKY, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306

SUJATH, R., Chatterjee, J. M., & Hassanien, A. E. (2020). A machine learning forecasting model for COVID-19 pandemic in India. Stochastic Environmental Research and Risk Assessment, 34(7), 959–972. https://doi.org/10.1007/s00477-020-01827-8

TANDON, H., Ranjan, P., Chakraborty, T., & Suhag, V. (2020). Coronavirus (COVID-19): ARIMA based time-series analysis to forecast near future, (January 2020), 1–11. Diambil dari http://arxiv.org/abs/2004.07859

TAYLOR, S. J., & Letham, B. (2017). Business Time Series Forecasting at Scale. PeerJ Preprints 5:e3190v2, 35(8), 48–90. https://doi.org/10.7287/peerj.preprints.3190v2

TYAGI, R., Bramhankar, M., Pandey, M., & M, K. (2020). COVID 19: Real-time Forecasts of Confirmed Cases, Active Cases, and Health Infrastructure Requirements for India and its States using the ARIMA model. medRxiv, 2020.05.17.20104588. https://doi.org/10.1101/2020.05.17.20104588

WANG, P., Zheng, X., Ai, G., Liu, D., & Zhu, B. (2020). Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. Chaos, Solitons and Fractals, 140(January), 110214. https://doi.org/10.1016/j.chaos.2020.110214

WU, K., Darcet, D., Wang, Q., & Sornette, D. (2020). Generalized logistic growth modeling of the COVID-19 outbreak in 29 provinces in China and in the rest of the world. Diambil dari http://arxiv.org/abs/2003.05681

YADAV, D., Maheshwari, H., & Chandra, U. (2020). Outbreak prediction of covid-19 in most susceptible countries. Global Journal of Environmental Science and Management, 0, 11–20. https://doi.org/10.22034/GJESM.2019.06.SI.02

YOUSAF, M., Zahir, S., Riaz, M., Hussain, S. M., & Shah, K. (2020). Statistical analysis of forecasting COVID-19 for upcoming month in Pakistan. Chaos, Solitons and Fractals, 138(January), 109926. https://doi.org/10.1016/j.chaos.2020.109926

ZEROUAL, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos, Solitons and Fractals, 140(January), 110121. https://doi.org/10.1016/j.chaos.2020.110121

ZHAO, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., … Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214–217. https://doi.org/10.1016/j.ijid.2020.01.050

Diterbitkan

07-02-2022

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Analisis Tren dan Perkiraan Pandemi COVID-19 di Indonesia Menggunakan Peramalan Metode Prophet :Sebelum dan Sesudah Aturan New Normal. (2022). Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(1), 51-60. https://doi.org/10.25126/jtiik.2022914060