Blockchain dan Kecerdasan Buatan dalam Pertanian : Studi Literatur

Penulis

Fajar Delli Wihartiko, Sri Nurdiati, Agus Buono, Edi Santosa

Abstrak

Dewasa ini teknologi blockchain dan kecerdasan buatan (artificial intelligence/AI) telah diimplementasikan dalam bidang pertanian. Teknologi blockchain menjanjikan keamanan dan peningkatan kepercayaan untuk pengguna. Teknologi kecerdasan buatan menjanjikan berbagai kemudahan bagi pengguna. Perpaduan kedua teknologi tersebut dapat meningkatan kepercayaan terhadap sistem kecerdasan buatan (blockchain for AI) atau dapat juga digunakan untuk meningkatkan kinerja sistem blockchain (AI for blockchain). Tujuan penelitian ini mengulas kedua teknologi tersebut dalam studi literatur serta memberikan tantangan riset ke depan terkait implementasinya di bidang pertanian.  Metodologi yang digunakan adalah Systematic Literature Review (SLR) dan text mining. Text mining digunakan untuk memberikan deskripsi riset yang ada berdasarkan kata-kata di setiap artikel terpilih. SLR digunakan untuk memberikan ulasan yang komprehensif terkait riset Blockchain dan kecerdasan Buatan dalam pertanian. Hasil penelitian menunjukan bahwa terdapat 10 % penelitian terkait penerapan blockchain dan AI dalam pertanian. Riset tersebut memiliki potensi besar untuk berkembang terlihat dari peningkatan jumlah publikasi dalam 2 tahun terakhir. Kontribusi penelitian ini meliputi posisi riset terkini dan usulan riset ke depan dengan mempertimbangkan kondisi pertanian Indonesia. Posisi riset tersebut didominasi komunitas peneliti dari negara-negara di Asia seperti India (33%), Pakistan (33%), China (14%) dan Korea (14%). Originalitas penelitian ini terletak pada studi literatur dari integrasi teknologi blockchain dan kecerdasan buatan dalam bidang pertanian menggunakan SLR dan text mining.

 

Abstract

Artificial intelligence and blockchain technology are being developed and implemented in Agriculture. Blockchain technology promises security and trust for users. Moreover, artificial intelligence technology promises convenience for users. The combination of these two technologies will increase trust in artificial intelligence systems. Besides, this combination can also increase security on the blockchain system through the application of artificial intelligence. This paper summarizes the application of both technologies and reviews them in a systematic literature review, presents a description of articles based on text mining, and provides future research challenges related to the implementation of blockchain and artificial intelligence in agriculture. The methodologies used are Systematic Literature Review (SLR) and text mining. Text mining is used to describe a description of existing research based on the words in each selected article. SLR is used to provide a comprehensive review of Blockchain research and Artificial intelligence in agriculture. The results showed that there were 10% of research related to the application of blockchain and AI in agriculture. This research has great potential for growth as seen from the increase in the number of publications in the last 2 years. The contribution of this research includes the latest research positions and future research proposals taking into account the conditions of Indonesian agriculture. The research position is dominated by the research community from countries in Asia such as India (33%), Pakistan (33%), China (14%) and Korea (14%). The originality of this research is a literature study on the integration of blockchain and artificial intelligence in agriculture using SLR and text mining.


Teks Lengkap:

PDF

Referensi


ABBAS, Q.E. & SUNG-BONG, J., 2019. A Survey of Blockchain and Its Applications. In: 1st International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2019.

ALAM, M.A., AHAD, A., ZAFAR, S. & TRIPATHI, G., 2020. A Neoteric Smart And Sustainable Farming Environment Incorporating Blockchain-Based Artificial Intelligence Approach. Cryptocurrencies and Blockchain Technology Applications, p.197.

ALMEIDA, O.B.-, CARDENAS-RODRIGUEZ, M., SAMANIEGO-COBO, T., FERRUZOLA-GÓMEZ, E., CABEZAS-CABEZAS, R. & BAZÁN-VERA, W., 2018. Blockchain in agriculture: A systematic literature review. In: Communications in Computer and Information Science. Springer Verlag.pp.44–56.

ANTONUCCI, F., FIGORILLI, S., COSTA, C., PALLOTTINO, F., RASO, L. AND MENESATTI, P., 2019. A review on blockchain applications in the agri-food sector. Journal of the Science of Food and Agriculture.

APRIADI, D. & SAPUTRA, A.Y., 2017. E-Commerce Berbasis Marketplace Dalam Upaya Mempersingkat Distribusi Penjualan Hasil Pertanian. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi).

ARENA, A., BIANCHINI, A., PERAZZO, P., VALLATI, C. & DINI, G., 2019. BRUSCHETTA: An IoT blockchain-based framework for certifying extra virgin olive oil supply chain. In: Proceedings - 2019 IEEE International Conference on Smart Computing, SMARTCOMP 2019.

AWAN, S.H., AHMED, S., NAWAZ, A., MAGHDID, S.S., ZAMAN, K., KHAN, M.Y.A., NAJAM, Z. & IMRAN, S., 2020. BlockChain with IoT, an emergent routing scheme for smart agriculture. International Journal of Advanced Computer Science and Applications.

BANNERJEE, G., SARKAR, U., DAS, S. & GHOSH, I., 2018. Artificial Intelligence in Agriculture: A Literature Survey. International Journal of Scientific Research in Computer Science Applications and Management Studies, [online] 7(3). Available at: .

BORAH, M.D., NAIK, V.B., PATGIRI, R., BHARGAV, A., PHUKAN, B. & BASANI, S.G.M., 2020. Supply Chain Management in Agriculture Using Blockchain and IoT.

BORDEL, B., MARTIN, DI., ALCARRIA, R. & ROBLES, T., 2019. A Blockchain-based Water Control System for the Automatic Management of Irrigation Communities. In: 2019 IEEE International Conference on Consumer Electronics, ICCE 2019.

CARBONE, A., DAVCEV, D., MITREKI, K., LJUPCO, K. & STANKOVSKI, V., 2018. Blockchain based Distributed Cloud Fog Platform for IoT Supply Chain Management.

CASADO, V.R., PRIETO, J., LA PRIETA, F. DE & CORCHADO, J.M., 2018. How blockchain improves the supply chain: Case study alimentary supply chain. In: Procedia Computer Science.

CASINO, F., DASAKLIS, T.K. & PATSAKIS, C., 2019. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics and Informatics, .

CHEN, R.Y., 2018. A traceability chain algorithm for artificial neural networks using T–S fuzzy cognitive maps in blockchain. Future Generation Computer Systems, 80, pp.198–210.

CHEN, Y., LI, Y. & LI, C., 2020. Electronic agriculture, blockchain and digital agricultural democratization: Origin, theory and application. Journal of Cleaner Production.

CHINNAIYAN, R. & BALACHANDAR, S., 2020. Reliable Administration Framework of Drones and IoT Sensors in Agriculture Farmstead using Blockchain and Smart Contracts. In: ACM International Conference Proceeding Series.

COREA, F., 2019. AI & Blockchain.

DAI, Y., XU, D., MAHARJAN, S., CHEN, Z., HE, Q. & ZHANG, Y., 2019. Blockchain and Deep Reinforcement Learning Empowered Intelligent 5G beyond. IEEE Network, 33(3), pp.10–17.

DAKSHAYINI, M. & BALAJI PRABHU, B. V., 2020. An Effective Big Data and Blockchain (BD-BC) Based Decision Support Model for Sustainable Agriculture System.

DANIEL, D. & IFEJIKA SPERANZA, C., 2020. The Role of Blockchain in Documenting Land Users’ Rights: The Canonical Case of Farmers in the Vernacular Land Market. Frontiers in Blockchain.

DAVE, D., PARIKH, S., PATEL, R. & DOSHI, N., 2019. A survey on blockchain technology and its proposed solutions. In: Procedia Computer Science.

DEMESTICHAS, K., PEPPES, N., ALEXAKIS, T. & ADAMOPOULOU, E., 2020. Blockchain in agriculture traceability systems: A review. Applied Sciences (Switzerland).

Dinh, T.N. & Thai, M.T., 2018. AI & Blockchain: A Disruptive Integration. Computer.

FAO, 2019. World Food and Agriculture Statistical Pocketbook. Rome: Food and Agriculture Organization of the United Nations.

FERRAG, M.A., SHU, L., YANG, X., DERHAB, A. & MAGLARAS, L., 2020. Security and Privacy for Green IoT-Based Agriculture: Review, Blockchain Solutions, and Challenges. IEEE Access.

GE, L., BREWSTER, C., SPEK, J., SMEENK, A. & TOP, J., 2017. Findings from the pilot study Blockchain for Agriculture and Food. [online] Wageningen Economic Research. Available at: .

HANG, L., ULLAH, I. & KIM, D.H., 2020. A secure fish farm platform based on blockchain for agriculture data integrity. Computers and Electronics in Agriculture.

HUA, J., WANG, X., KANG, M., WANG, H. & WANG, F.Y., 2018. Blockchain Based Provenance for Agricultural Products: A Distributed Platform with Duplicated and Shared Bookkeeping. In: IEEE Intelligent Vehicles Symposium, Proceedings. Institute of Electrical and Electronics Engineers Inc.pp.97–101.

IPB, 2019. Pengembangan Penelitian Agro-Maritim 4.0. 1st ed. IPB Press.

KAMBLE, S.S., Gunasekaran, A. & Sharma, R., 2019. Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management.

KAMBLE, S.S., GUNASEKARAN, A. & SHARMA, R., 2020. Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management.

KAMILARIS, A., FONTS, A. & PRENAFETA-BOLDΎ, F.X., 2019. The rise of blockchain technology in agriculture and food supply chains. Trends in Food Science and Technology.

KARAFILOSKI, E., 2017. Blockchain Solutions for Big Data Challenges. IEEE EUROCON 17th International Conference, (July), pp.763–768.

KASTEN, J., 2020. Blockchain on the Farm: A Systematic Literature Review. Journal of Strategic Innovation & Sustainability, 15(2), pp.129–153.

KHAN, P.W., BYUN, Y.-C. & PARK, N., 2020. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning. Sensors, 20(10), p.2990.

KIM, H. & LASKOWSKI, M., 2018. Agriculture on the Blockchain: Sustainable Solutions for Food, Farmers, and Financing. SSRN Electronic Journal.

KLERKX, L., JAKKU, E. & LABARTHE, P., 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, .

KUMAR, M. & IYENGAR, S.N., 2018. Blockchain: An Emerging Paradigm in Rice Supply Chain Management. International Journal of Engineering Research in Computer Science and Engineering (IJERCSE).

LENG, K., BI, Y., JING, L., FU, H.C. & VAN NIEUWENHUYSE, I., 2018. Research on agricultural supply chain system with double chain architecture based on blockchain technology. Future Generation Computer Systems.

LEZOCHE, M., PANETTO, H., KACPRZYK, J., HERNANDEZ, J.E. & ALEMANY DÍAZ, M.M.E., 2020. Agri-food 4.0: A survey of the Supply Chains and Technologies for the Future Agriculture. Computers in Industry.

LI, X., WANG, D. & LI, M., 2020. Convenience analysis of sustainable E-agriculture based on blockchain technology. Journal of Cleaner Production.

LIAKOS, K.G., BUSATO, P., MOSHOU, D., PEARSON, S. & BOCHTIS, D., 2018. Machine learning in agriculture: A review. Sensors (Switzerland).

LIN, W., HUANG, X., FANG, H., WANG, V., HUA, Y., WANG, J., YIN, H., YI, D. & YAU, L., 2020. Blockchain Technology in Current Agricultural Systems: From Techniques to Applications. IEEE Access.

LIN, Y.-P., PETWAY, J., ANTHONY, J., MUKHTAR, H., LIAO, S.-W., CHOU, C.-F. & HO, Y.-F., 2017. Blockchain: The Evolutionary Next Step for ICT E-Agriculture. Environments.

LUCENA, P., BINOTTO, A.P.D., MOMO, F. DA S. & KIM, H., 2018. A Case Study for Grain Quality Assurance Tracking based on a Blockchain Business Network. symposium on Foundations and Applications of Blockchain, [online] (FAB), pp.1–6. Available at: .

MAO, T., FAN, Y., YANG, J. & WEI, H., 2020. A Research on Tea Traceability Consensus Mechanism Based on Blockchain Technology. In: New Developments of IT, IoT and ICT Applied to Agriculture. Springer.pp.129–137.

MIRABELLI, G. & SOLINA, V., 2020. Blockchain and agricultural supply chains traceability: Research trends and future challenges. In: Procedia Manufacturing.

MISTRY, I., TANWAR, S., TYAGI, S. & KUMAR, N., 2020. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing.

MUNIR, M.S., BAJWA, I.S. & CHEEMA, S.M., 2019. An intelligent and secure smart watering system using fuzzy logic and blockchain. Computers and Electrical Engineering.

NAKAMOTO, S., 2008. Bitcoin: A Peer-to-Peer Electronic Cash SyNakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Consulted, 1–9. doi:10.1007/s10838-008-9062-0stem. Consulted.

O’MARA-EVES, A., THOMAS, J., MCNAUGHT, J., MIWA, M. & ANANIADOU, S., 2015. Using text mining for study identification in systematic reviews: A systematic review of current approaches. Systematic Reviews, 4(1).

PAPA, S.F., 2017. Use of Blockchain Technology in Agribusiness: Transparency and Monitoring in Agricultural Trade.

PATIL, A.S., TAMA, B.A., PARK, Y. & RHEE, K.H., 2018. A framework for blockchain based secure smart green house farming. In: Lecture Notes in Electrical Engineering.

PUTRI, A.N., HARIADI, M. & WIBAWA, A.D., 2020. Smart Agriculture Using Supply Chain Management Based on Hyperledger Blockchain. In: IOP Conference Series: Earth and Environmental Science.

RABAH, K., 2018. Convergence of AI, IoT, Big Data and Blockchain: A Review. The Lake Institute Journal, [online] 1(1), pp.1–18. Available at: .

RATHORE, S., PAN, Y. & PARK, J.H., 2019. BlockDeepNet: A blockchain-based secure deep learning for IoT network. Sustainability (Switzerland).

REDDY, H., ARAVIND REDDY, Y. & SASHI REKHA, K., 2019. Blockchain: To improvise economic efficiency and supply chain management in agriculture. International Journal of Innovative Technology and Exploring Engineering, 8(12), pp.4999–5004.

SALAH, K., NIZAMUDDIN, N., JAYARAMAN, R. & OMAR, M., 2019. Blockchain-Based Soybean Traceability in Agricultural Supply Chain. IEEE Access, 7, pp.73295–73305.

SALAH, K., REHMAN, M.H.U., NIZAMUDDIN, N. & AL-FUQAHA, A., 2018. Blockchain for AI: Review and open research challenges. IEEE Access.

SALMAN, T., ZOLANVARI, M., ERBAD, A., JAIN, R. & SAMAKA, M., 2019. Security services using blockchains: A state of the art survey. IEEE Communications Surveys and Tutorials.

SHAHID, A., ALMOGREN, A., JAVAID, N., AL-ZAHRANI, F.A., ZUAIR, M. & ALAM, M., 2020a. Blockchain-Based Agri-Food Supply Chain: A Complete Solution. IEEE Access.

SHAHID, A., SARFRAZ, U., MALIK, M.W., IFTIKHAR, M.S., JAMAL, A. & JAVAID, N., 2020b. Blockchain-Based Reputation System in Agri-Food Supply Chain. In: Advances in Intelligent Systems and Computing.

SHINGH, S., KAMALVANSHI, V., GHIMIRE, S. & BASYAL, S., 2020. Dairy Supply Chain System Based on Blockchain Technology. Asian Journal of Economics, Business and Accounting.

SINGH, S.K., RATHORE, S. & Park, J.H., 2019. BlockIoTIntelligence: A Blockchain-enabled Intelligent IoT Architecture with Artificial Intelligence. Future Generation Computer Systems.

SISODIYA, V.S. & GARG, H., 2020. A Comprehensive study of Blockchain and its various Applications.

SWAN, M., 2015. Blockchain Thinking: The Brain as a DAC (Decentralized Autonomous Organization). Texas Bitcoin Conference, pp.27–35.

TIAN, F., 2016. An agri-food supply chain traceability system for China based on RFID & blockchain technology. In: 2016 13th International Conference on Service Systems and Service Management, ICSSSM 2016.

TIWARI, U., 2020. Application of Blockchain in Agri-Food Supply Chain. Britain International of Exact Sciences (BIoEx) Journal.

TSE, D., ZHANG, B., YANG, Y., CHENG, C. & MU, H., 2017. Blockchain application in food supply information security. In: IEEE International Conference on Industrial Engineering and Engineering Management.

VARDI, M.Y., 2012. Artificial intelligence: Past and future. Communications of the ACM, .

VOHRA, A., PANDEY, N. & KHATRI, S.K., 2019. Decision Making Support System for Prediction of Prices in Agricultural Commodity. Proceedings - 2019 Amity International Conference on Artificial Intelligence, AICAI 2019, pp.345–348.

WANG, K., DONG, J., WANG, Y. & YIN, H., 2019. Securing Data with Blockchain and AI. IEEE Access, 7, pp.77981–77989.

WANG, Y. & YANG, Y., 2020. Research on Agricultural Food Safety Based on Blockchain Technology. In: Journal of Physics: Conference Series. p.12013.

WENG, J., WENG, J., ZHANG, J., LI, M., ZHANG, Y. & LUO, W., 2019. DeepChain: Auditable and Privacy-Preserving Deep Learning with Blockchain-based Incentive. IEEE Transactions on Dependable and Secure Computing, pp.1–1.

WIDODO, E., PRIHADIANTO, R.D. & HARTANTO, D., 2018. Multi period pricing for managing local fruit supply chain. In: MATEC Web of Conferences.

WU, H. TE & TSAI, C.W., 2019. An intelligent agriculture network security system based on private blockchains. Journal of Communications and Networks.

XIAO, Y. & WATSON, M., 2019. Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research.

XIE, C., SUN, Y. & LUO, H., 2017. Secured Data Storage Scheme Based on Block Chain for Agricultural Products Tracking. In: Proceedings - 2017 3rd International Conference on Big Data Computing and Communications, BigCom 2017.

XIONG, H., DALHAUS, T., WANG, P. & HUANG, J., 2020. Blockchain Technology for Agriculture: Applications and Rationale. Frontiers in Blockchain.

YADAF, V.S. & SINGH, A., 2019. A systematic literature review of blockchain Technology in Agriculture. Digital Communications and Networks, pp.973–981.

YADAV, V.S., SINGH, A.R., RAUT, R.D. & GOVINDARAJAN, U.H., 2020. Blockchain technology adoption barriers in the Indian agricultural supply chain: an integrated approach. Resources, Conservation and Recycling, 161, p.104877.

ZHANG, X., CAO, Z. & DONG, W., 2020. Overview of Edge Computing in the Agricultural Internet of Things: Key Technologies, Applications, Challenges. IEEE Access.

ZHENG, Z., XIE, S., DAI, H., CHEN, X. & WANG, H., 2017. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In: Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017.




DOI: http://dx.doi.org/10.25126/jtiik.0814059