Analisis Kesiapan Penerapan Process Mining pada Sistem Manajemen Pembelajaran Universitas Telkom

Penulis

Angelina Prima Kurniati, Gede Agung Ary Wisudiawan

Abstrak

Sistem manajemen pembelajaran (Learning Management System/ LMS) berbasis komputer telah banyak digunakan untuk mengelola pembelajaran dalam institusi pendidikan, termasuk universitas. LMS merekam dan mengelola akses pengguna secara otomatis dalam bentuk event log. Data dalam event log tersebut dapat dianalisis untuk mengenali pola penggunaan LMS sebagai pertimbangan pengembangan LMS. Salah satu metode yang dapat diadopsi adalah process mining, yaitu menganalisis data event log berbasis proses. Analisis data berbasis proses ini bertujuan untuk memodelkan proses yang terjadi dan terekam dalam LMS, mengecek kesesuaian pelaksanaan proses dengan prosedur, dan mengusulkan pengembangan proses di masa mendatang. Makalah ini mengeksplorasi kesiapan data penggunaan LMS di Universitas Telkom sebagai subjek penelitian untuk dianalisis dengan pendekatan process mining. Sepanjang pengetahuan kami, belum ada penelitian sebelumnya yang melakukan analisis data berbasis proses pada LMS ini. Kontribusi penelitian ini adalah eksplorasi peluang untuk menganalisis proses pembelajaran dan pengembangan metode pembelajaran berbasis LMS. Analisis kesiapan LMS dilakukan berdasarkan daftar pengecekan komponen yang dibutuhkan dalam process mining. Makalah ini mengikuti tahap-tahap utama dalam Process Mining Process Methodology (PM2). Studi kasus yang dieksplorasi adalah proses pembelajaran pada satu mata kuliah dalam satu semester berdasarkan event log yang diekstrak dari LMS. Hasil penelitian ini menunjukkan bahwa analisis data dalam LMS ini dapat digunakan untuk menganalisis performansi pembelajaran di Universitas Telkom dari kelompok pengguna yang berbeda-beda dan dapat dikembangkan untuk menganalisis data pada studi kasus yang lebih besar. Studi kelayakan ini diakhiri dengan diskusi tentang kelayakan LMS untuk dianalisis dengan process mining, evaluasi oleh tim ahli LMS, dan usulan pengembangan LMS di masa mendatang.

 

Abstract

Computer-based Learning Management Systems (LMS) are commonly used in educational institutions, including universities. An LMS records and manages user access logs in an event log. Data in an event log can be analysed to understand patterns in the LMS usage to support recommendations for improvements. One promising method is process mining, which is a process-based data analytics working on event logs. Process mining aims to discover process models as recorded in the LMS, conformance checking of process execution to the defined procedure, and suggest improvements. This paper explores the feasibility of Telkom University LMS usage data to be analysed using process mining. To the best of our knowledge, there was no previous research doing process-based data analytics on this LMS. This paper contributes to explore opportunities to analyse learning processes and enhance LMS-based learning methods. The feasibility study is based on a data component checklist for process mining. This paper is written following the main stages on the Process Mining Project Methodology (PM2). We explore a case study of the learning process of a course in a semester, based on an event log extracted from the LMS. The results show that data analytics on this LMS can be used to analyse learning process performance in Telkom University, based on different user roles. This feasibility study is concluded with a discussion on the feasibility of the LMS to be analysed using process mining, an evaluation by the representative of the LMS expert team, and a recommendation for improvements.

Teks Lengkap:

PDF

Referensi


VAN DER AALST, W.M.P., 2004. Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), pp.1128–1142.

VAN DER AALST, W.M.P., 2016. Process Mining: Data Science in Action. 2nd ed. Springer-Verlag Berlin Heidelberg.

VAN DER AALST, W.M.P., Adriansyah, A., Medeiros, A.K.A. De, Arcieri, F. and et al., 2011. Process Mining Manifesto. Business Process Management Workshops, 99, pp.169–194.

AISA, V., KURNIATI, A.P. and WIBOWO, Y.F.A., 2015. Evaluation of the online assessment test using process mining (Case Study: Intensive English Center). In: 2015 3rd International Conference on Information and Communication Technology, ICoICT 2015. pp.472–477.

ARTHASALINA, D.S., 2019. 10 Perguruan Tinggi Swasta Terbaik Tahun 2019 Versi Ristekdikti. IDN Times. [online] Available at: .

BOGARIN, A., CEREZO, R. and ROMERO, C., 2018. A survey on educational process mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, [online] 8(1), p.e1230. Available at: [Accessed 9 Jun. 2020].

BUIJS, J.C.A.M., VAN DONGEN, B.F. and VAN DER AALST, W.M.P., 2012. On the role of fitness, precision, generalization and simplicity in process discovery. In: H. Springer, Berlin, ed. OTM Confederated International Conferences. pp.305–322.

CAIRNS, A.H., GUENI, B., FHIMA, M., CAIRNS, A., et al. 2015. Process Mining in the Education Domain. International Journal on Advances in Intelligent Systems, 08(1 & 2), pp.219–232.

CERQUEIRA, V., TORGO, L. and MOZETIC, I., 2020. Evaluating time series forecasting models: an empirical study on performance estimation methods. Machine Learning, pp.1–28.

DAVIS, B., CARMEAN, C. and WAGNER, E., 2009. The Evolution of the LMS : From Management to Learning. The ELearning Guild Research, p.24.

VAN ECK, M.L., LU, X., LEEMANS, S.J. and VAN DER AALST W.M.P., 2015. PM2: A process mining project methodology. In: International Conference on Advanced Information Systems Engineering. pp.297–313.

GROGER, C., NIEDERMANN, F. and MITSCHANG, B., 2012. Data Mining-driven Manufacturing Process Optimization - Google Scholar. [online] the World Congress on Engineering. Available at: [Accessed 9 Jun. 2020].

JABR, M.A. and AL-OMARI, H.K., 2010. Design and implementation of E-learning management system using service oriented architecture. World Academy of Science, Engineering and Technology, 64(March), pp.59–64.

JOHNSON, O.A., DHAFARI, T.B.A., KURNIATI, A. and ROJAS, E., 2018. The ClearPath Method for Care Pathway Process Mining and Simulation. In: Lecture Notes in Business Information Processing. pp.1–12.

KURNIATI, A.P., JOHNSON, O., HOGG, D. and HALL, G., 2016. Process Mining in Oncology: a Literature Review. In: The 6th ICICM, IEEE. Hertfordshire.

KURNIATI, A.P., ROJAS E., HOGG, D. and JOHNSON, O., 2017. The assessment of data quality issues for process mining in healthcare using MIMIC-III , a publicly available e-health record database. (2).

LAROSE, D.T., LAROSE, C.D., DZIUDA, D.M., HAMEL, L., MARKOV, Z. and BILISOLY, R., 2016. Data Mining and Learning Analytics: Applications in Educational Research. Hoboken, New Jersey: John Wiley & Sons.

ROJAS, E. and MUNOZ-GAMA, J., 2016. Process mining in healthcare: A literature review. Journal of biomedical informatics, 61, pp.224–236.

TRCKA, N., PECHENIZKIY M. and VAN DER AALST, W.M.P., 2010. Process mining from educational data. Handbook of Educational Data Mining, pp.123–142.

UNIVERSITAS TELKOM. 2018. LMS CeLOE Universitas Telkom. [online] Available at: .

ZHENG, Y., WANG, J., DOLL, W., DENG, X. and WILLIAMS, M., 2018. The impact of organisational support, technical support, and self-efficacy on faculty perceived benefits of using learning management system. Behaviour and Information Technology, [online] 37(4), pp.311–319. Available at: [Accessed 26 Jul. 2020].




DOI: http://dx.doi.org/10.25126/jtiik.2021863875